Skip to main content
Log in

Interplay Between Cytokine-Induced and Cyclic Equibiaxial Deformation-Induced Nitric Oxide Production and Metalloproteases Expression in Human Alveolar Epithelial Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Ventilator-induced lung overdistension has been a growing concern in the management of mechanically ventilated patients. Mechanical ventilation triggers or enhances the net inflammatory and tissue remodeling activities. Although it has been shown that proinflammatory and tissue remodeling factors play important roles during airway remodeling, the interplay between them is not well understood. Thus, our objective was to study and characterize the molecular mechanism of cyclic equibiaxial deformation-induced airway inflammation and remodeling either in the presence or absence of a pre-existing inflammatory condition. This study was done using an in vitro dynamic model, which can simulate different mechanical ventilative conditions. Type II alveolar epithelial cell (A549) monolayers were exposed to the different levels of mechanical ventilative conditions using the Flexcell® Tension Plus™ 4000T system, which generated the different levels of cyclic equibiaxial deformation (5, 10, 15, and 20%) at 0.2 Hz deformation frequency. The production of nitric oxide (NO), the expression of metalloprotease-2 (MMP-2)/tissue inhibitor metalloprotease-2 (TIMP-2), and the activation of MMP-2 were measured under the different levels of cyclic equibiaxial deformation either in the presence or absence of TNF-α. Our study indicated that cyclic equibiaxial deformation-induced production of NO and MMP-2/TIMP-2. Higher levels of cyclic equibiaxial deformation increased the expression of the active form of MMP-2. In particular, in the presence of TNF-α, the more active form of MMP-2 was detected during both cyclic equibiaxial deformation and remodeling periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6

Similar content being viewed by others

References

  1. Altemeier, W. A., G. Matute-Bello, C. W. Frevert, Y. Kawata, O. Kajikawa, T. R. Martin, and R. W. Glenny. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am. J. Physiol. Lung Cell Mol. Physiol. 287(3):L533–L542, 2004.

    Article  Google Scholar 

  2. Choe, M. M., P. H. Sporn, and M. A. Swartz. Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model. Am. J. Respir. Cell Mol. Biol. 35(3):306–313, 2006.

    Article  Google Scholar 

  3. Felix, J. A., M. L. Woodruff, and E. R. Dirksen. Stretch increases inositol 1,4,5-trisphosphate concentration in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 14(3):296–301, 1996.

    Google Scholar 

  4. Foda, H. D., E. E. Rollo, M. Drews, C. Conner, K. Appelt, D. R. Shalinsky, and S. Zucker. Ventilator-induced lung injury upregulates and activates gelatinases and emmprin: attenuation by the synthetic matrix metalloproteinase inhibitor, prinomastat (ag3340). Am. J. Respir. Cell Mol. Biol. 25(6):717–724, 2001.

    Google Scholar 

  5. Frank, J. A., J. F. Pittet, C. Wray, and M. A. Matthay. Protection from experimental ventilator-induced acute lung injury by il-1 receptor blockade. Thorax 63(2):147–153, 2007.

    Article  Google Scholar 

  6. Ganster, R. W., B. S. Taylor, L. Shao, and D. A. Geller. Complex regulation of human inducible nitric oxide synthase gene transcription by stat 1 and nf-κb. Proc. Natl. Acad. Sci. USA 98(15):8638–8643, 2001.

    Article  Google Scholar 

  7. Hammerschmidt, S., H. Kuhn, U. Sack, A. Schlenska, C. Gessner, A. Gillissen, and H. Wirtz. Mechanical stretch alters alveolar type ii cell mediator release toward a proinflammatory pattern. Am. J. Respir. Cell Mol. Biol. 33(2):203–210, 2005.

    Article  Google Scholar 

  8. Haseneen, N. A., G. G. Vaday, S. Zucker, and H. D. Foda. Mechanical stretch induces mmp-2 release and activation in lung endothelium: role of emmprin. Am. J. Physiol. Lung Cell Mol. Physiol. 284(3):L541–547, 2003.

    Google Scholar 

  9. Kumar, A., S. Lnu, R. Malya, D. Barron, J. Moore, D. B. Corry, and A. M. Boriek. Mechanical stretch activates nuclear factor-kappab, activator protein-1, and mitogen-activated protein kinases in lung parenchyma: Implications in asthma. Faseb J. 17(13):1800–1811, 2003.

    Article  Google Scholar 

  10. Kwon, S., and S. C. George. Synergistic cytokine-induced nitric oxide production in human alveolar epithelial cells. Nitric Oxide 3(4):348–357, 1999.

    Article  Google Scholar 

  11. Lacherade, J. C., A. Van De Louw, E. Planus, E. Escudier, M. P. D’Ortho, C. Lafuma, A. Harf, and C. Delclaux. Evaluation of basement membrane degradation during TNF-alpha-induced increase in epithelial permeability. Am. J. Physiol. Lung Cell Mol. Physiol. 281(1):L134–143, 2001.

    Google Scholar 

  12. Li, Q., and I. M. Verma. Nf-kappab regulation in the immune system. Nat. Rev. Immunol. 2(10):725–734, 2002.

    Article  Google Scholar 

  13. Lizarraga, F., V. Maldonado, and J. Melendez-Zajgla. Tissue inhibitor of metalloproteinases-2 growth-stimulatory activity is mediated by nuclear factor-kappa b in A549 lung epithelial cells. Int. J. Biochem. Cell Biol. 36(8):1655–1663, 2004.

    Article  Google Scholar 

  14. Matthay, M. A., G. A. Zimmerman, C. Esmon, J. Bhattacharya, B. Coller, C. M. Doerschuk, J. Floros, M. A. Gimbrone, Jr., E. Hoffman, R. D. Hubmayr, M. Leppert, S. Matalon, R. Munford, P. Parsons, A. S. Slutsky, K. J. Tracey, P. Ward, D. B. Gail, and A. L. Harabin. Future research directions in acute lung injury: summary of a national heart, lung, and blood institute working group. Am. J. Respir. Crit. Care Med. 167(7):1027–1035, 2003.

    Article  Google Scholar 

  15. Nam, H. Y., B. H. Choi, J. Y. Lee, S. G. Lee, Y. H. Kim, K. H. Lee, H. K. Yoon, J. S. Song, H. J. Kim, and Y. Lim. The role of nitric oxide in the particulate matter (±2.5)-induced NFκb activation in lung epithelial cells. Toxicol. Lett. 148(1–2):95–102, 2004.

    Article  Google Scholar 

  16. Ning, Q. M., and X. R. Wang. Response of alveolar type II epithelial cells to mechanical stretch and lipopolysaccharide. Respiration 74(5):579–585, 2007.

    Article  Google Scholar 

  17. Reddy, S. P., P. M. Hassoun, and R. Brower. Redox imbalance and ventilator-induced lung injury. Antioxid. Redox Signal. 9(11):2003–2012, 2007.

    Article  Google Scholar 

  18. Sacco, O., M. Silvestri, F. Sabatini, R. Sale, A. C. Defilippi, and G. A. Rossi. Epithelial cells and fibroblasts: structural repair and remodelling in the airways. Paediatr. Respir. Rev. 5(Suppl A):S35–S40, 2004.

    Article  Google Scholar 

  19. Smirnov, I. M., K. Bailey, C. H. Flowers, N. W. Garrigues, and L. J. Wesselius. Effects of tnf-alpha and il-1beta on iron metabolism by A549 cells and influence on cytotoxicity. Am. J. Physiol. 277(2 Pt 1):L257–263, 1999.

    Google Scholar 

  20. Spratt, D. E., V. Taiakina, and J. G. Guillemette. Calcium-deficient calmodulin binding and activation of neuronal and inducible nitric oxide synthases. Biochim. Biophys. Acta 1774(10):1351–1358, 2007.

    Google Scholar 

  21. Szabo, H., Z. Novak, H. Bauer, E. Szatmari, A. Farkas, K. Wejksza, A. Orbok, I. Wilhelm, and I. A. Krizbai. Regulation of proteolytic activity induced by inflammatory stimuli in lung epithelial cells. Cell Mol. Biol. (Noisy-le-grand) 51(Suppl):OL729–OL735, 2005.

    Google Scholar 

  22. Tillie-Leblond, I., J. Pugin, C. H. Marquette, C. Lamblin, F. Saulnier, A. Brichet, B. Wallaert, A. B. Tonnel, and P. Gosset. Balance between proinflammatory cytokines and their inhibitors in bronchial lavage from patients with status asthmaticus. Am. J. Respir. Crit. Care Med. 159(2):487–494, 1999.

    Google Scholar 

  23. Tremblay, L., F. Valenza, S. P. Ribeiro, J. Li, and A. S. Slutsky. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest. 99(5):944–952, 1997.

    Article  Google Scholar 

  24. Tschumperlin, D. J., and S. S. Margulies. Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am. J. Physiol. 275(6 Pt 1):L1173–L1183, 1998.

    Google Scholar 

  25. Tschumperlin, D. J., J. Oswari, and A. S. Margulies. Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am. J. Respir. Crit. Care Med. 162(2 Pt 1):357–362, 2000.

    Google Scholar 

  26. Vlahakis, N. E., M. A. Schroeder, R. E. Pagano, and R. D. Hubmayr. Role of deformation-induced lipid trafficking in the prevention of plasma membrane stress failure. Am. J. Respir. Crit. Care Med. 166(9):1282–1289, 2002.

    Article  Google Scholar 

  27. Yamamoto, H., H. Teramoto, K. Uetani, K. Igawa, and E. Shimizu. Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase c-dependent pathway in alveolar epithelial cells. Respirology 7(2):103–109, 2002.

    Article  Google Scholar 

Download references

Acknowledgment

Funding for this study was provided by BIE Department start-up, VPR start-up at Utah State University, and NIH Grant No. 1 R21 CA 131798-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonjo Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, H., Kwon, S. Interplay Between Cytokine-Induced and Cyclic Equibiaxial Deformation-Induced Nitric Oxide Production and Metalloproteases Expression in Human Alveolar Epithelial Cells. Cel. Mol. Bioeng. 2, 615–624 (2009). https://doi.org/10.1007/s12195-009-0092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0092-4

Keywords

Navigation