Skip to main content
Log in

Investigation of optimum anti-scatter grid selection for digital radiography: physical imaging properties and detectability of low-contrast signals

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Our aim in this study was to evaluate the effect of the grid variations on the imaging performance for a computed radiographic system under identical exposure condition. Digital radiographies using a 20-cm Lucite phantom were performed without grid and with grid ratios of 5:1, 8:1, 10:1, 12:1, and 14:1. The scatter fraction, the incident dose to the image receptor, the Wiener spectrum (WS), and the noise-equivalent quanta (NEQ) were measured. Visibility of low-contrast signals was evaluated using a contrast-detail phantom. The scatter fractions decreased considerably with an increase in the grid ratio. On the other hand, the WSs were increased (the noise property deteriorated) as the grid ratio increased due to a decreased incident dose to the image receptor under the identical exposure condition. The NEQs were improved as the grid ratio increased. The high grid ratios provided higher low-contrast detectability compared to the low grid ratios. Our results indicated that the removal of scattered radiation was very effective in improvement of the NEQ in the digital system under the identical exposure condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Higashida Y, Moribe N, Hirata Y, Morita K, Doudanuki S, Sonoda Y, Katsuda N, Hiai Y, Misumi W, Matsumoto M, Yoshioka S, Takahashi M. Computed radiography utilizing laser-stimulated luminescence: detectability of simulated low-contrast radiographic objects. Comput Med Imaging Graph. 1988;12(3):137–45.

    Article  PubMed  CAS  Google Scholar 

  2. Fujita H, Ueda K, Morishita J, Fujikawa T, Ohtsuka A, Sai T. Basic imaging properties of a computed radiographic system with photostimulable phosphors. Med Phys. 1989;16(1):52–9.

    Article  PubMed  CAS  Google Scholar 

  3. Morishita J, Fujita H, Ohtsuka A, Ueda K, Fujikawa T, Yamauchi S, Nishihara S, Hashida M, Kanzaki R, Kanai K, Tanaka S, Nakanishi T. Basic imaging properties in a computed radiography system. Jpn J Radiol Technol. 1990;46(6):824–30. (in Japanese).

    Google Scholar 

  4. Ohtsuka A, Morishita J, Ueda K, Hashida M, Yamauchi S, Murakami S, Takada H, Ohguchi S, Kanai K, Ohmura K, Nakanishi T. Low-scatter radiography using computed radiography: a new concept in improving image quality. Jpn J Radiol Technol. 1991;47(4):610–9. (in Japanese).

    Google Scholar 

  5. Sanada S, Doi K, Xu XW, Yin FF, Giger ML, MacMahon H. Comparison of imaging properties of a computed radiography system and screen-film systems. Med Phys. 1991;18(3):414–20.

    Article  PubMed  CAS  Google Scholar 

  6. Higashida Y, Moribe N, Morita K, Katsuda N, Hatemura M, Takada T, Takahashi M, Yamashita J. Detection of subtle microcalcifications: comparison of computed radiography and screen-film mammography. Radiology. 1992;183(2):483–6.

    PubMed  CAS  Google Scholar 

  7. Kanai K, Ohtsuka A, Hashida M, Yamauchi S, Ueda K, Morishita J, Nishihara S, Kanzaki R, Nakanishi T. Detectability of simulated low-contrast object using computed radiography: differences for incident dose, primary fraction and contrast enhancement. Jpn J Radiol Technol. 1993;49(4):570–5. (in Japanese).

    Google Scholar 

  8. Don S, Hildebolt CF, Sharp TL, Shackelford GD, Lau DM, Herman TE, McAlister WH. Computed radiography versus screen-film radiography: detection of pulmonary edema in a rabbit model that simulates neonatal pulmonary infiltrates. Radiology. 1999;213(2):455–60.

    PubMed  CAS  Google Scholar 

  9. Aufrichtig R. Comparison of low contrast detectability between a digital amorphous silicon and a screen-film based imaging system for thoracic radiography. Med Phys. 1999;26(7):1349–58.

    Article  PubMed  CAS  Google Scholar 

  10. Rong XJ, Shaw CC, Liu X, Lemacks MR, Thompson SK. Comparison of an amorphous silicon/cesium iodide flat-panel digital chest radiography system with screen/film and computed radiography systems—a contrast-detail phantom study. Med Phys. 2001;28(11):2328–35.

    Article  PubMed  CAS  Google Scholar 

  11. Ludwig K, Lenzen H, Kamm KF, Link TM, Diederich S, Wormanns D, Heindel W. Performance of a flat-panel detector in detecting artificial bone lesions: comparison with conventional screen-film and storage-phosphor radiography. Radiology. 2002;222(2):453–9.

    Article  PubMed  Google Scholar 

  12. Ludwig K, Henschel A, Bernhardt TM, Lenzen H, Wormanns D, Diederich S, Heindel W. Performance of a flat-panel detector in the detection of artificial erosive changes: comparison with conventional screen-film and storage-phosphor radiography. Eur Radiol. 2003;13(6):1316–23.

    PubMed  Google Scholar 

  13. Uffmann M, Schaefer-Prokop C. Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol. 2009;72(2):202–8.

    Article  PubMed  Google Scholar 

  14. Utsumi H, Otsuka A, Nakanishi T, Yokoyama T, Higashida Y. A systematic study on factors affecting patient dose (3rd report: on grid and Bucky factor). Jpn J Radiol Technol. 1979;35(3):331–7. (in Japanese).

    Google Scholar 

  15. Chan HP, Doi K. Investigation of the performance of antiscatter grids: Monte Carlo simulation studies. Phys Med Biol. 1982;27(6):785–803.

    Article  PubMed  CAS  Google Scholar 

  16. Chan HP, Doi K. Physical characteristics of scattered radiation and the performance of antiscatter grids in diagnostic radiology. Radiographics. 1982;2(3):378–406.

    Google Scholar 

  17. Doi K, Frank PH, Chan HP, Vyborny CJ, Makino S, Iida N, Carlin M. Physical and clinical evaluation of new high-strip-density radiographic grids. Radiology. 1983;147(2):575–82.

    PubMed  CAS  Google Scholar 

  18. Chan HP, Frank PH, Doi K, Iida N, Higashida Y. Ultra-high-strip-density radiographic grids: a new antiscatter technique for mammography. Radiology. 1985;154(3):807–15.

    PubMed  CAS  Google Scholar 

  19. Chan HP, Higashida Y, Doi K. Performance of antiscatter grids in diagnostic radiology: experimental measurements and Monte Carlo simulation studies. Med Phys. 1985;12(4):449–54.

    Article  PubMed  CAS  Google Scholar 

  20. Chan HP, Lam KL, Wu YZ. Studies of performance of antiscatter grids in digital radiography: effect on signal-to-noise ratio. Med Phys. 1990;17(4):655–64.

    Article  PubMed  CAS  Google Scholar 

  21. Wamser GR, Aichinger H, Maier W, Bohndorf K. Clinical evaluation of a new stationary high strip density antiscatter grid in comparison with a conventional moving grid: influence on image quality and patient radiation dose. Eur Radiol. 2001;11(9):1710–9.

    Article  PubMed  CAS  Google Scholar 

  22. Boone JM, Seibert JA, Tang CM, Lane SM. Grid and slot scan scatter reduction in mammography: comparison by using Monte Carlo techniques. Radiology. 2002;222(2):519–27.

    Article  PubMed  Google Scholar 

  23. Shen SZ, Bloomquist AK, Mawdsley GE, Yaffe MJ, Elbakri I. Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system. Med Phys. 2006;33(4):1108–15.

    Article  PubMed  Google Scholar 

  24. Gennaro G, Katz L, Souchay H, Klausz R, Alberelli C, di Maggio C. Grid removal and impact on population dose in full-field digital mammography. Med Phys. 2007;34(2):547–55.

    Article  PubMed  CAS  Google Scholar 

  25. Kanai K, Ohtsuka A, Morishita J, Yamauchi S, Ueda K, Nishihara S, Tanaka S, Nakanishi T. Comparison of measurement methods of characteristic curves for digital subtraction angiography (DSA) systems. Jpn J Radiol Technol. 1988;44(10):1492–6. (in Japanese).

    Google Scholar 

  26. Morishita J, Fujita H, Sakamoto K, Ueda K, Ohtsuka A, Fujikawa T, Yamauchi S, Kamakura T, Tanaka S. Measurements of characteristic curves in a computed radiographic system (II). Med Imag Inf Sci. 1989;6(1):25–33. (in Japanese).

    Google Scholar 

  27. Inatsu H, Ueda M, Azuma T, Mitarai A, Arita H. Relation between the position of lead disks and measured values of the scatter fraction for the disk method. Jpn J Radiol Technol. 1991;47(5):709–13. (in Japanese).

    Google Scholar 

  28. Giger ML, Doi K, Metz CE. Investigation of basic imaging properties in digital radiography. 2. Noise Wiener spectrum. Med Phys. 1984;11(6):797–805.

    Article  PubMed  CAS  Google Scholar 

  29. Dobbins JT 3rd, Samei E, Ranger NT, Chen Y. Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med Phys. 2006;33(5):1466–75.

    Article  PubMed  Google Scholar 

  30. Asahara M. Physical image quality assessment in digital radiography: noise power spectrum. Jpn J Radiol Technol. 2009;65(12):1671–9. (in Japanese).

    Article  Google Scholar 

  31. Zhou Z, Gao F, Zhao H, Zhang L. Techniques to improve the accuracy of noise power spectrum measurements in digital x-ray imaging based on background trends removal. Med Phys. 2011;38(3):1600–10.

    Article  PubMed  Google Scholar 

  32. Kodera Y. Basic thinking of image analysis: detective quantum efficiency (DQE) and noise-equivalent number of quanta (NEQ). Jpn J Radiol Technol. 2010;66(8):958–66. (in Japanese).

    Article  Google Scholar 

  33. Higashide R, Ichikawa K, Kunitomo H, Sawada M. Proposal and verification of presampled MTF measurement by the simple analysis method using edge method. Jpn J Radiol Technol. 2008;64(4):417–25. (in Japanese).

    Article  Google Scholar 

  34. Higashide R, Ichikawa K, Kunitomo H, Ohashi K, Kawano M. Influence of angle-measurement error on pre-sampled MTF and proposal of an optimal technique of angle measurement. Jpn J Radiol Technol. 2009;65(2):245–53. (in Japanese).

    Article  Google Scholar 

  35. Higashide R. Physical image quality assessment in digital radiography: modulation transfer function-edge method. Jpn J Radiol Technol. 2009;65(10):1449–56. (in Japanese).

    Article  Google Scholar 

  36. Thijssen MAO, Bijkerk KR, van der Burght RJM. Manual: contrast-detail phantom artinis CDRAD type 2.0. University Medical Center Nijmegen, 1998.

  37. Bijkerk KR, Thijssen MAO, Arnoldussen ThJM. Manual CDMAM-phantom type 3.4. University Medical Center Nijmegen, St. Radboud, 2001.

  38. Higashida Y, Baba Y, Hatemura M, Yoshida A, Takada T, Takahashi M. Physical and clinical evaluation of a 2,048 × 2,048-matrix image intensifier TV digital imaging system in bone radiography. Acad Radiol. 1996;3(10):842–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kyprianou IS, Rudin S, Bednarek DR, Hoffmann KR. Generalizing the MTF and DQE to include x-ray scatter and focal spot unsharpness: application to a new microangiographic system. Med Phys. 2005;32(2):613–26.

    Article  PubMed  Google Scholar 

  40. Boyce SJ, Samei E. Imaging properties of digital magnification radiography. Med Phys. 2006;33(4):984–96.

    Article  PubMed  Google Scholar 

  41. Samei E, Ranger NT, MacKenzie A, Honey ID, Dobbins JT 3rd, Ravin CE. Effective DQE (eDQE) and speed of digital radiographic systems: an experimental methodology. Med Phys. 2009;36(8):3806–17.

    Article  PubMed  Google Scholar 

  42. Tanaka N, Naka K, Fukushima H, Morishita J, Toyofuku F, Ohki M, Higashida Y. Digital magnification mammography with matched incident exposure: physical imaging properties and detectability of simulated microcalcifications. Radiol Phys Technol. 2011;4(2):156–63.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Hidetaka Arimura, PhD, and Seiji Kumazawa, PhD, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, and Hiroyuki Kuroyanagi, MSc, Fujifilm Medical Corporation, for useful discussions; and to former graduate students of Kyushu University, for participating in this study as observers. The authors wish to express their gratitude to the Japanese Society of Radiological Technology for use of the Excel format for measurements of presampled MTF and WS. We thank the editorial assistant of this journal, Mrs. Elisabeth Lanzl, for providing initial and final polishing of the submitted manuscript in improving the readability and English expressions, and the editors and reviewers for giving us useful comments and suggestions for improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobukazu Tanaka.

About this article

Cite this article

Tanaka, N., Naka, K., Saito, A. et al. Investigation of optimum anti-scatter grid selection for digital radiography: physical imaging properties and detectability of low-contrast signals. Radiol Phys Technol 6, 54–60 (2013). https://doi.org/10.1007/s12194-012-0169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-012-0169-y

Keywords

Navigation