Skip to main content

Advertisement

Log in

Development of TCR-T cell therapy targeting mismatched HLA-DPB1 for relapsed leukemia after allogeneic transplantation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Relapsed leukemia after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a significant challenge, with the re-emergence of the primary disease being the most frequent cause of death. Human leukocyte antigen (HLA)-DPB1 mismatch occurs in approximately 70% of unrelated allo-HSCT cases, and targeting mismatched HLA-DPB1 is considered reasonable for treating relapsed leukemia following allo-HSCT if performed under proper conditions. In this study, we established several clones restricted to HLA-DPB1*02:01, -DPB1*04:02, and -DPB1*09:01 from three patients who underwent HLA-DPB1 mismatched allo-HSCT using donor-derived alloreactive T cells primed to mismatched HLA-DPB1 in the recipient’s body after transplantation. A detailed analysis of the DPB1*09:01-restricted clone 2A9 showed reactivity against various leukemia cell lines and primary myeloid leukemia blasts, even with low HLA-DP expression. T cell receptor (TCR)-T cells derived from clone 2A9 retained the ability to trigger HLA-DPB1*09:01-restricted recognition and lysis of various leukemia cell lines in vitro. Our study demonstrated that the induction of mismatched HLA-DPB1 specific T cell clones from physiologically primed post-allo-HSCT alloreactive CD4+ T cells and the redirection of T cells with cloned TCR cDNA by gene transfer are feasible as techniques for future adoptive immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available on reasonable request to the corresponding author.

References

  1. Duval M, Klein JP, He W, Cahn JY, Cairo M, Camitta BM, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28:3730–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wayne AS, Giralt S, Kroger N, Bishop MR. Proceedings from the National Cancer Institute’s second international workshop on the biology, prevention, and treatment of relapse after hematopoietic stem cell transplantation: introduction. Biol Blood Marrow Transplant. 2013;19:1534–6.

    Article  PubMed  Google Scholar 

  3. Bazarbachi A, Schmid C, Labopin M, Beelen D, Wolfgang Blau I, Potter V, et al. Evaluation of trends and prognosis over time in patients with AML relapsing after allogeneic hematopoietic cell transplant reveals improved survival for young patients in recent years. Clin Cancer Res. 2020;26:6475–82.

    Article  CAS  PubMed  Google Scholar 

  4. Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, Filipovich A, Horowitz M, et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood. 2004;104:1923–30.

    Article  CAS  PubMed  Google Scholar 

  5. Furst D, Muller C, Vucinic V, Bunjes D, Herr W, Gramatzki M, et al. High-resolution HLA matching in hematopoietic stem cell transplantation: a retrospective collaborative analysis. Blood. 2013;122:3220–9.

    Article  PubMed  Google Scholar 

  6. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373:1550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nash RA, Storb R. Graft-versus-host effect after allogeneic hematopoietic stem cell transplantation: GVHD and GVL. Curr Opin Immunol. 1996;8:674–80.

    Article  CAS  PubMed  Google Scholar 

  8. Tiercy JM. How to select the best available related or unrelated donor of hematopoietic stem cells? Haematologica. 2016;101:680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morishima Y, Kashiwase K, Matsuo K, Azuma F, Morishima S, Onizuka M, et al. Biological significance of HLA locus matching in unrelated donor bone marrow transplantation. Blood. 2015;125:1189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goulmy E. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol Rev. 1997;157:125–40.

    Article  CAS  PubMed  Google Scholar 

  11. Akatsuka Y, Morishima Y, Kuzushima K, Kodera Y, Takahashi T. Minor histocompatibility antigens as targets for immunotherapy using allogeneic immune reactions. Cancer Sci. 2007;98:1139–46.

    Article  CAS  PubMed  Google Scholar 

  12. Wu CJ, Ritz J. Induction of tumor immunity following allogeneic stem cell transplantation. Adv Immunol. 2006;90:133–73.

    Article  CAS  PubMed  Google Scholar 

  13. Inaguma Y, Akahori Y, Murayama Y, Shiraishi K, Tsuzuki-Iba S, Endoh A, et al. Construction and molecular characterization of a T-cell receptor-like antibody and CAR-T cells specific for minor histocompatibility antigen HA-1H. Gene Ther. 2014;21:575–84.

    Article  CAS  PubMed  Google Scholar 

  14. Warren EH, Fujii N, Akatsuka Y, Chaney CN, Mito JK, Loeb KR, et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood. 2010;115:3869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Balen P, van Bergen CAM, van Luxemburg-Heijs SAP, de Klerk W, van Egmond EHM, Veld SAJ, et al. CD4 donor lymphocyte infusion can cause conversion of chimerism without GVHD by inducing immune responses targeting minor histocompatibility antigens in HLA class II. Front Immunol. 2018;9:3016.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Herr W, Eichinger Y, Beshay J, Bloetz A, Vatter S, Mirbeth C, et al. HLA-DPB1 mismatch alleles represent powerful leukemia rejection antigens in CD4 T-cell immunotherapy after allogeneic stem-cell transplantation. Leukemia. 2017;31:434–45.

    Article  CAS  PubMed  Google Scholar 

  17. Fleischhauer K, Shaw BE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities. Blood. 2017;130:1089–96.

    Article  CAS  PubMed  Google Scholar 

  18. Ibisch C, Gallot G, Vivien R, Diez E, Jotereau F, Garand R, et al. Recognition of leukemic blasts by HLA-DPB1-specific cytotoxic T cell clones: a perspective for adjuvant immunotherapy post-bone marrow transplantation. Bone Marrow Transplant. 1999;23:1153–9.

    Article  CAS  PubMed  Google Scholar 

  19. Rutten CE, van Luxemburg-Heijs SA, Halkes CJ, van Bergen CA, Marijt EW, Oudshoorn M, et al. Patient HLA-DP-specific CD4+ T cells from HLA-DPB1-mismatched donor lymphocyte infusion can induce graft-versus-leukemia reactivity in the presence or absence of graft-versus-host disease. Biol Blood Marrow Transplant. 2013;19:40–8.

    Article  CAS  PubMed  Google Scholar 

  20. Katsuyama N, Kawase T, Barakat C, Mizuno M, Tomita A, Ozeki K, et al. T cell receptor-engineered T cells derived from target human leukocyte antigen-DPB1-specific T cell can be a potential tool for therapy against leukemia relapse following allogeneic hematopoietic cell transplantation. Nagoya J Med Sci. 2023 (in press).

  21. Gonzalez-Galarza FF, McCabe A, Santos E, Jones J, Takeshita L, Ortega-Rivera ND, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 2020;48:D783–8.

    CAS  PubMed  Google Scholar 

  22. Riddell SR, Greenberg PD. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods. 1990;128:189–201.

    Article  CAS  PubMed  Google Scholar 

  23. Akatsuka Y, Martin EG, Madonik A, Barsoukov AA, Hansen JA. Rapid screening of T-cell receptor (TCR) variable gene usage by multiplex PCR: application for assessment of clonal composition. Tissue Antigens. 1999;53:122–34.

    Article  CAS  PubMed  Google Scholar 

  24. Hamana H, Shitaoka K, Kishi H, Ozawa T, Muraguchi A. A novel, rapid and efficient method of cloning functional antigen-specific T-cell receptors from single human and mouse T-cells. Biochem Biophys Res Commun. 2016;474:709–14.

    Article  CAS  PubMed  Google Scholar 

  25. Sommermeyer D, Uckert W. Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J Immunol. 2010;184:6223–31.

    Article  CAS  PubMed  Google Scholar 

  26. Okamoto S, Amaishi Y, Goto Y, Ikeda H, Fujiwara H, Kuzushima K, et al. A promising vector for TCR gene therapy: differential effect of siRNA, 2A peptide, and disulfide bond on the introduced TCR expression. Mol Ther Nucleic Acids. 2012;1: e63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Philip B, Kokalaki E, Mekkaoui L, Thomas S, Straathof K, Flutter B, et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood. 2014;124:1277–87.

    Article  CAS  PubMed  Google Scholar 

  28. Rutten CE, van Luxemburg-Heijs SA, van der Meijden ED, Griffioen M, Oudshoorn M, Willemze R, et al. HLA-DPB1 mismatching results in the generation of a full repertoire of HLA-DPB1-specific CD4+ T cell responses showing immunogenicity of all HLA-DPB1 alleles. Biol Blood Marrow Transplant. 2010;16:1282–92.

    Article  CAS  PubMed  Google Scholar 

  29. Giudicelli V, Lefranc MP. Imgt-Ontology 2012. Front Genet. 2012;3:79.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wei S, Charmley P, Robinson MA, Concannon P. The extent of the human germline T-cell receptor V beta gene segment repertoire. Immunogenetics. 1994;40:27–36.

    Article  CAS  PubMed  Google Scholar 

  31. Imai N, Ikeda H, Tawara I, Shiku H. Tumor progression inhibits the induction of multifunctionality in adoptively transferred tumor-specific CD8+ T cells. Eur J Immunol. 2009;39:241–53.

    Article  CAS  PubMed  Google Scholar 

  32. Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med. 2007;204:1405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawase T, Matsuo K, Kashiwase K, Inoko H, Saji H, Ogawa S, et al. HLA mismatch combinations associated with decreased risk of relapse: implications for the molecular mechanism. Blood. 2009;113:2851–8.

    Article  CAS  PubMed  Google Scholar 

  34. Fleischhauer K, Shaw BE, Gooley T, Malkki M, Bardy P, Bignon JD, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13:366–74.

    Article  CAS  PubMed  Google Scholar 

  35. Janelle V, Delisle JS. T-cell dysfunction as a limitation of adoptive immunotherapy: current concepts and mitigation strategies. Cancers (Basel). 2021;13:598.

    Article  CAS  PubMed  Google Scholar 

  36. Gorczynski RM, Rittenberg MB. Analysis of mixed leucocyte culture (MLC) reactive cells after in vitro priming. Changes in avidity of T cell receptors. Cell Immunol. 1975;16:171–81.

    Article  CAS  PubMed  Google Scholar 

  37. Geiger R, Duhen T, Lanzavecchia A, Sallusto F. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med. 2009;206:1525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Purner MB, Berens RL, Krug EC, Curiel TJ. Epstein-Barr virus-transformed B cells, a potentially convenient source of autologous antigen-presenting cells for the propagation of certain human cytotoxic T lymphocytes. Clin Diagn Lab Immunol. 1994;1:696–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ji Q, Perchellet A, Goverman JM. Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs. Nat Immunol. 2010;11:628–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laghmouchi A, Kester MGD, Hoogstraten C, Hageman L, de Klerk W, Huisman W, et al. Promiscuity of peptides presented in HLA-DP molecules from different immunogenicity groups is associated with T-cell cross-reactivity. Front Immunol. 2022;13: 831822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage EJ, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med. 2018;379:2330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Department of Immunology, Nagoya University Graduate School of Medicine for their valuable technical support and insightful discussions during the course of the study. We would also like to express our gratitude to the staff of the Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, for their valuable technical support. This study was supported in part by Grants-in-Aid for Scientific Research (grant no. 21K08369 to YA) from the Ministry of Education, Culture, Sports, Science, by AMED (grant no. JP21ek0510027 to YA) and Aichi Cancer Research Foundation (to YA).

Author information

Authors and Affiliations

Authors

Contributions

YA designed the experiments. CB, NK, YS, and YA performed the experiments. YI, SM, MK, KO, HI, AT, and MS collected and provided the clinical samples. NN, AD-O, YT, and HN provided technical support. CB and YA wrote the manuscript. YA secured the funds. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Yoshiki Akatsuka.

Ethics declarations

Conflict of interest

YA received honoraria and research funding from Bristol-Myers Squibb. All other authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Supplementary file2 (PDF 1060 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barakat, C., Inagaki, Y., Mizuno, S. et al. Development of TCR-T cell therapy targeting mismatched HLA-DPB1 for relapsed leukemia after allogeneic transplantation. Int J Hematol 118, 252–266 (2023). https://doi.org/10.1007/s12185-023-03621-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03621-y

Keywords

Navigation