Skip to main content
Log in

First reported case of splenic diffuse red pulp small B-cell lymphoma with novel mutations in CXCR4 and TRAF3 genes

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Splenic diffuse red pulp small B-cell lymphoma (SDRPL) is a rare B-cell tumor whose genetic characteristics are poorly understood. Here, we introduce the case of a 62-year-old patient with SDRPL who showed progressive elevation of lymphocytes and progressive spleen enlargement. Immunohistochemistry showed that CD20 and CD79a were positive, and the Ki-67 labelling index was approximately 5%, consistent with the pathological features of splenic B-cell lymphoma. Spleen tissue and peripheral blood samples from the patient were sequenced using a next-generation sequencing platform, and mutations possibly were detected in the CXCR4 and TRAF3 genes that may be related to the pathogenesis of the disease. This finding may provide insights into the molecular pathogenesis of SDRPL and assist in molecular diagnosis and targeted therapy for SDRPL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Vig T, Kodiatte TA, Manipadam MT, Aboobacker FN. A rare case of splenic diffuse red pulp small B-cell lymphoma (SDRPL): a review of the literature on primary splenic lymphoma with hairy cells. Blood Res. 2018;53(1):74–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. International Agency for Research on Cancer; World Health Organization. WHO Classification of Tumours of Haematopoieticand Lymphoid Tissues; International Agency for Research on Cancer: Lyon, France, 2008.

  3. Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, et al. The 5th edition of the World Health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720–48.

  4. Wang RC, Medeiros LJ, Chang KC. Villous lymphocytes in splenic large B-cell lymphoma with diffuse red pulp infiltration. Int J Hematol. 2019;109(2):133–4.

    Article  PubMed  Google Scholar 

  5. Kerbauy MN, Fernandes CM, Bezerra ED, Lage LA, Siqueira SA, Pereira J. Splenic diffuse red-pulp small B-cell lymphoma associated with hepatitis B virus: a report of two cases. Sao Paulo Med J. 2016;134(4):359–65.

    Article  PubMed  Google Scholar 

  6. Julhakyan HL, Al-Radi LS, Moiseeva TN, Danishyan KI, Kovrigina AM, Glebova SM, et al. A single-center experience in splenic diffuse red pulp lymphoma diagnosis. Clin Lymphoma Myeloma Leuk. 2016;16(Suppl):S166–9.

    Article  PubMed  Google Scholar 

  7. Kanellis G, Mollejo M, Montes-Moreno S, Rodriguez-Pinilla SM, Cigudosa JC, Algara P, et al. Splenic diffuse red pulp small B-cell lymphoma: revision of a series of cases reveals characteristic clinico-pathological features. Haematologica. 2010;95(7):1122–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suzuki T, Miyoshi H, Shimono J, Kawamoto K, Arakawa F, Furuta T, et al. Clinicopathological analysis of splenic red pulp low-grade B-cell lymphoma. Pathol Int. 2020;70(5):280–6.

    Article  CAS  PubMed  Google Scholar 

  9. Yilmaz E, Chhina A, Nava VE, Aggarwal A. A review on splenic diffuse red pulp small B-cell lymphoma. Curr Oncol. 2021;28(6):5148–54.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mendes LS, Attygalle A, Matutes E, Wotherspoon A. Annexin A1 expression in a splenic diffuse red pulp small B-cell lymphoma: report of the first case. Histopathology. 2013;63(4):590–3.

    PubMed  Google Scholar 

  11. Ben Younes K, Doghri R, Mrad K, Ben Romdhane N, Ben A-F. Cyclin A2 as a potential differential marker of splenic diffuse red pulp small B-cell lymphoma: a report of the first case. Ann Hematol. 2017;96(3):511–2.

    Article  PubMed  Google Scholar 

  12. Jallades L, Baseggio L, Sujobert P, Huet S, Chabane K, Callet-Bauchu E, et al. Exome sequencing identifies recurrent BCOR alterations and the absence of KLF2, TNFAIP3 and MYD88 mutations in splenic diffuse red pulp small B-cell lymphoma. Haematologica. 2017;102(10):1758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Curiel-Olmo S, Mondéjar R, Almaraz C, Mollejo M, Cereceda L, Marès R, et al. Splenic diffuse red pulp small B-cell lymphoma displays increased expression of cyclin D3 and recurrent CCND3 mutations. Blood. 2017;129(8):1042–5.

    Article  CAS  PubMed  Google Scholar 

  14. Traverse-Glehen A, Baseggio L, Salles G, Coiffier B, Felman P, Berger F. Splenic diffuse red pulp small-B cell lymphoma: toward the emergence of a new lymphoma entity. Discov Med. 2012;13(71):253–65.

    PubMed  Google Scholar 

  15. Martinez D, Navarro A, Martinez-Trillos A, Molina-Urra R, Gonzalez-Farre B, Salaverria I, et al. NOTCH1, TP53, and MAP2K1 mutations in splenic diffuse red pulp small B-cell lymphoma are associated with progressive disease. Am J Surg Pathol. 2016;40(2):192–201.

    Article  PubMed  Google Scholar 

  16. Milanesi S, Locati M, Borroni EM. Aberrant CXCR4 signaling at crossroad of WHIM Syndrome and Waldenstrom’s Macroglobulinemia. Int J Mol Sci. 2020;21(16):5696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett. 2020;217:91–115.

    Article  CAS  PubMed  Google Scholar 

  18. Bianchi ME, Mezzapelle R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front Immunol. 2020;11:2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bidkhori HR, Bahrami AR, Farshchian M, Heirani-Tabasi A, Mirahmadi M, Hasanzadeh H, et al. Mesenchymal stem/stromal cells overexpressing CXCR4R334X revealed enhanced migration: a lesson learned from the pathogenesis of WHIM syndrome. Cell Transplant. 2021;30:9636897211054498.

    Article  PubMed  Google Scholar 

  20. Kaiser LM, Hunter ZR, Treon SP, Buske C. CXCR4 in Waldenström’s Macroglobulinema: chances and challenges. Leukemia. 2021;35(2):333–45.

    Article  CAS  PubMed  Google Scholar 

  21. Habringer S, Lapa C, Herhaus P, Schottelius M, Istvanffy R, Steiger K, et al. Dual targeting of acute leukemia and supporting Niche by CXCR4-directed theranostics. Theranostics. 2018;8(2):369–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayerhoefer ME, Jaeger U, Staber P, Raderer M, Wadsak W, Pfaff S, et al. [68Ga]Ga-Pentixafor PET/MRI for CXCR4 imaging of chronic lymphocytic leukemia: preliminary results. Invest Radiol. 2018;53(7):403–8.

    Article  CAS  PubMed  Google Scholar 

  23. Juntikka T, Vaittinen S, Vahlberg T, Jyrkkiö S, Minn H. Somatostatin receptors and chemokine receptor cxcr4 in lymphomas: a histopathological review of six lymphoma subtypes. Front Oncol. 2021;11: 710900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang YA, Yang X, Yao J, Ren Y, Liu P. Identification of CXCR4 upregulation in diffuse large B-cell lymphoma associated with prognostic significance and clinicopathological characteristics. Dis Markers. 2022;2022:3276925.

    PubMed  PubMed Central  Google Scholar 

  25. Danis J, Kelemen E, Rajan N, Nagy N, Széll M, Ádám É. TRAF3 and NBR1 both influence the effect of the disease-causing CYLD(Arg936X) mutation on NF-κB activity. Exp Dermatol. 2021;30(11):1705–10.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou L, Zhang Y, Meads MB, Dai Y, Ning Y, Hu X, et al. IAP and HDAC inhibitors interact synergistically in myeloma cells through noncanonical NF-κB- and caspase-8-dependent mechanisms. Blood Adv. 2021;5(19):3776–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez-Chacon G, Adrados M, Vallejo-Cremades MT, Lefebvre S, Reed JC, Zapata JM. Dysregulated TRAF3 and BCL2 expression promotes multiple classes of mature Non-hodgkin B cell lymphoma in Mice. Front Immunol. 201;9:3114.

  28. Pérez-Carretero C, Hernández-Sánchez M, González T, Quijada-Álamo M, Martín-Izquierdo M, Santos-Mínguez S, et al. TRAF3 alterations are frequent in del-3’IGH chronic lymphocytic leukemia patients and define a specific subgroup with adverse clinical features. Am J Hematol. 2022;97(7):903–14.

    Article  PubMed  Google Scholar 

Download references

Funding

Sponsored by the Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents.

Author information

Authors and Affiliations

Authors

Contributions

SZ and WF conceived the study and drafted the manuscript. LL performed splenectomy on the patient. JJ, HL, JW, FL, YF, and YZ collected and analyzed the clinical data. JQ performed the NGS platform and analyzed the sequencing data. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Weiying Feng.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Ethical approval

This study passed the ethical review (Ethics Clearance No.008).

Patient consent statement

Informed consent was obtained from the patient.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Lin, L., Jin, J. et al. First reported case of splenic diffuse red pulp small B-cell lymphoma with novel mutations in CXCR4 and TRAF3 genes. Int J Hematol 118, 394–399 (2023). https://doi.org/10.1007/s12185-023-03581-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03581-3

Keywords

Navigation