Skip to main content

Advertisement

Log in

CD109, a negative regulator of TGF-β signaling, is a putative risk marker in diffuse large B-cell lymphoma

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

CD109 is a glycosylphosphatidylinositol-anchored glycoprotein that negatively regulates TGF-β signaling. CD109 was originally identified in hematopoietic tumors; however, the significance of CD109 in hematopoietic malignancies remains unclear. Here, we study the association of CD109 with diffuse large B-cell lymphoma (DLBCL) prognosis. Eighty-four DLBCL specimens were immunohistochemically analyzed for CD109 expression, and 31 and 53 cases were classified into low- and high-CD109 expression groups, respectively. CD109 expression was not associated with overall survival using the Kaplan–Meier analysis and log-rank tests (P = 0.17); however, a significant association was observed between high-CD109 expression and low-1-year survival (P = 0.01). Moreover, in combination with the revised International Prognostic Index (R-IPI), R-IPI-poor/CD109-high was associated with poorer prognosis compared with R-IPI-poor alone. We assessed TGF-β signaling in CD109-depleted Nalm6 cells (a human B-lymphoblastic leukemia/lymphoma cell line), and found prolonged Smad2 phosphorylation compared with control cells after TGF-β1 stimulation, suggesting that CD109 attenuates TGF-β1 signaling in human B-cell tumors. These results suggest that CD109 is a putative biomarker for identifying a high-risk group among DLBCL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brashem-Stein C, Nugent D, Bernstein ID. Characterization of an antigen expressed on activated human T cells and platelets. J Immunol. 1988;140:2330–3.

    CAS  PubMed  Google Scholar 

  2. Sutherland DR, Yeo E, Ryan A, Mills GB, Bailey D, Baker MA. Identification of a cell-surface antigen associated with activated T lymphoblasts and activated platelets. Blood. 1991;77:84–93.

    CAS  PubMed  Google Scholar 

  3. Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R, et al. Cell surface antigen CD109 is a novel member of the α2 macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood. 2002;99:1683–91.

    Article  CAS  PubMed  Google Scholar 

  4. Haregewoin A, Solomon K, Hom RC, Soman G, Bergelson JM, Bhan AK, et al. Cellular expression of a GPI-linked T cell activation protein. Cell Immunol. 1994;156:357–70.

    Article  CAS  PubMed  Google Scholar 

  5. Murray LJ, Bruno E, Uchida N, Hoffman R, Nayar R, Yeo EL, et al. CD109 is expressed on a subpopulation of CD34+ cells enriched in hematopoietic stem and progenitor cells. Exp Hematol. 1999;27:1282–94.

    Article  CAS  PubMed  Google Scholar 

  6. Smith JW, Hayward CP, Horsewood P, Warkentin TE, Denommme GA, Kelton J. Characterization and localization of the GOVa/b alloantigens to the glycosylphosphatidylinositol-anchored protein CDwl09 on human platelets. Blood. 1995;86:2807–14.

    CAS  PubMed  Google Scholar 

  7. Hashimoto M, Ichihara M, Watanabe T, Kawai K, Koshikawa K, Yuasa N, et al. Expression of CD109 in human cancer. Oncogene. 2004;23:3716–20.

    Article  CAS  PubMed  Google Scholar 

  8. Sato T, Murakumo Y, Hagiwara S, Jijiwa M, Suzuki C, Yatabe Y, et al. High-level expression of CD109 is frequently detected in lung squamous cell carcinomas. Pathol Int. 2007;57:719–24.

    Article  CAS  PubMed  Google Scholar 

  9. Hasegawa M, Moritani S, Murakumo Y, Sato T, Hagiwara S, Suzuki C, et al. CD109 expression in basal-like breast carcinoma. Pathol Int. 2008;58:288–94.

    Article  PubMed  Google Scholar 

  10. Hagiwara S, Murakumo Y, Sato T, Shigetomi T, Mitsudo K, Tohnai I, et al. Up-regulation of CD109 expression is associated with carcinogenesis of the squamous epithelium of the oral cavity. Cancer Sci. 2008;99:1916–23.

    Article  CAS  PubMed  Google Scholar 

  11. Hagikura M, Murakumo Y, Hasegawa M, Jijiwa M, Hagiwara S, Mii S, et al. Correlation of pathological grade and tumor stage of urothelial carcinomas with CD109 expression. Pathol Int. 2010;60:735–43.

    Article  PubMed  Google Scholar 

  12. Ohshima Y, Yajima I, Kumasaka MY, Yanagishita T, Watanabe D, Takahashi M, et al. CD109 expression levels in malignant melanoma. J Dermatol Sci. 2010;57:140–2.

    Article  CAS  PubMed  Google Scholar 

  13. Emori M, Tsukahara T, Murase M, Kano M, Murata K, Takahashi A, et al. High expression of CD109 antigen regulates the phenotype of cancer stem-like cells/cancer-initiating cells in the novel epithelioid sarcoma cell line ESX and is related to poor prognosis of soft tissue sarcoma. PLoS One. 2013;8:e84187.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tao J, Li H, Li Q, Yang Y. CD109 is a potential target for triple-negative breast cancer. Tumour Biol. 2014;35:12083–90.

    Article  CAS  PubMed  Google Scholar 

  15. Dong F, Wang Y, Li L, Wang Y, Liu X, Liu J. CD109 expression is increased in cutaneous squamous cell carcinoma. J Dermatol. 2014;41:947–9.

    Article  CAS  PubMed  Google Scholar 

  16. Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S, et al. Identification of CD109 as part of the TGF-β receptor system in human keratinocytes. Faseb J. 2006;20:1525–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hagiwara S, Murakumo Y, Mii S, Shigetomi T, Yamamoto N, Furue H, et al. Processing of CD109 by furin and its role in the regulation of TGF-β signaling. Oncogene. 2010;29:2181–91.

    Article  CAS  PubMed  Google Scholar 

  18. Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, et al. The TGF-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors. Biochim Biophys Acta. 2011;1813:742–53.

    Article  CAS  PubMed  Google Scholar 

  19. Bizet AA, Tran-Khanh N, Saksena A, Liu K, Buschmann MD, Philip A. CD109-mediated degradation of TGF-β receptors and inhibition of TGF-β responses involve regulation of SMAD7 and Smurf2 localization and function. J Cell Biochem. 2012;113:238–46.

    Article  CAS  PubMed  Google Scholar 

  20. Litvinov IV, Bizet AA, Binamer Y, Jones DA, Sasseville D, Philip A. CD109 release from the cell surface in human keratinocytes regulates TGF-β receptor expression, TGF-β signaling and STAT3 activation: relevance to psoriasis. Exp Dermatol. 2011;20:627–32.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang JM, Murakumo Y, Hagiwara S, Jiang P, Mii S, Kalyoncu E, et al. CD109 attenuates TGF-β1 signaling and enhances EGF signaling in SK-MG-1 human glioblastoma cells. Biochem Biophys Res Commun. 2015;459:252–8.

    Article  CAS  PubMed  Google Scholar 

  22. Sakakura H, Mii S, Hagiwara S, Kato T, Yamamoto N, Hibi H, et al. CD109 is a component of exosome secreted from cultured cells. Biochem Biophys Res Commun. 2016;469:816–22.

    Article  CAS  PubMed  Google Scholar 

  23. Li C, Hancock MA, Sehgal P, Zhou S, Reinhardt DP, Philip A. Soluble CD109 binds TGF-β and antagonizes TGF-β signaling and responses. Biochem J. 2016;473:537–47.

    Article  CAS  PubMed  Google Scholar 

  24. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, et al. A revised European–American classification of lymphoid neoplasms: a proposal from the international Lymphoma Study Group. Blood. 1994;84:1361–92.

    CAS  PubMed  Google Scholar 

  25. De Paepe P, De Wolf-Peeters C. Diffuse large B-cell lymphoma: a heterogeneous group of non-Hodgkin lymphomas comprising several distinct clinicopathological entities. Leukemia. 2007;21:37–43.

    Article  PubMed  Google Scholar 

  26. Lossos IS. Molecular pathogenesis of diffuse large B-cell lymphoma. J Clin Oncol. 2005;23:6351–7.

    Article  CAS  PubMed  Google Scholar 

  27. Vose JM, Link BK, Grossbard ML, Czuczman M, Grillo-Lopez A, Gilman P, et al. Phase II study of rituximab in combination with chop chemotherapy in patients with previously untreated, aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2001;19:389–97.

    Article  CAS  PubMed  Google Scholar 

  28. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.

    Article  CAS  PubMed  Google Scholar 

  29. Feugier P, Van Hoof A, Sebban C, Solal-Celigny P, Bouabdallah R, Ferme C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23:4117–26.

    Article  CAS  PubMed  Google Scholar 

  30. Pfreundschuh M, Trumper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7:379–91.

    Article  CAS  PubMed  Google Scholar 

  31. Nyman H, Adde M, Karjalainen-Lindsberg ML, Taskinen M, Berglund M, Amini RM, et al. Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood. 2007;109:4930–5.

    Article  CAS  PubMed  Google Scholar 

  32. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329:987–94.

  33. Sehn LH, Berry B, Chhannabhai M, Fitzgerald C, Gill K, Hoskins P, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109:1857–61.

    Article  CAS  PubMed  Google Scholar 

  34. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by expression profiling. Nature. 2000;403:503–11.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fishear RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. N Engl J Med. 2002;346:1937–47.

    Article  PubMed  Google Scholar 

  36. Read JA, Koff JL, Nastoupil LJ, Williams JN, Cohen JB, Flowers CR. Evaluating cell-of origin subtype methods for predicting diffuse large B-cell lymphoma survival: a meta-analysis of gene expression profiling and immunohistochemistry algorithms. Clin Lymphoma Myeloma Leuk. 2014;14:460–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    Article  CAS  PubMed  Google Scholar 

  38. Castillo JJ, Bertran BE, Song MK, Ilic I, Leppa S, Nurmi H, et al. The Hans algorithm is not prognostic in patients with diffuse large B-cell lymphoma treated with R-CHOP. Leuk Res. 2012;36:413–7.

    Article  PubMed  Google Scholar 

  39. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the committee on Hodgkin’s disease staging classification. Cancer Res. 1971;31:1860–1.

    CAS  PubMed  Google Scholar 

  40. Emori M, Tsukahara T, Murata K, Sugita S, Sonoda T, Kaya M, et al. Prognostic impact of CD109 expression in myxofibrosarcoma. J Surg Oncol. 2015;111:975–9.

    Article  CAS  PubMed  Google Scholar 

  41. Bierie B, Moses HL. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6:506–20.

    Article  CAS  PubMed  Google Scholar 

  42. Saltzman A, Munro R, Searfoss G, Franks C, Jaye M, Ivashchenko Y. Transforming growth factor-β-mediated apoptosis in the Ramos B-lymphoma cell line is accompanied by caspase activation and Bcl-XL downregulation. Exp Cell Res. 1998;242:244–54.

    Article  CAS  PubMed  Google Scholar 

  43. Spender LC, Inman GJ. TGF-β induces growth arrest in Burkett lymphoma cells via transcriptional repression of E2F-1. J Biol Chem. 2009;284:1435–42.

    Article  CAS  PubMed  Google Scholar 

  44. Kawabata KC, Ehata S, Komuro A, Takeuchi K, Miyazono K. TGF-β-induced apoptosis of B-cell lymphoma Ramos cells through reduction of MS4A1/CD20. Oncogene. 2013;32:2096–106.

    Article  CAS  PubMed  Google Scholar 

  45. Mao S, Yang W, Ai L, Li Z, Jin J. Transforming growth factor β type II receptor as a marker in diffuse large B cell lymphoma. Tumour Biol. 2015;36:9903–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Keyaki-kai Grant from the Graduate School of Medical Science, Kitasato University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Murakumo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, M., Ichinoe, M., Okina, S. et al. CD109, a negative regulator of TGF-β signaling, is a putative risk marker in diffuse large B-cell lymphoma. Int J Hematol 105, 614–622 (2017). https://doi.org/10.1007/s12185-016-2173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2173-1

Keywords

Navigation