Skip to main content

Advertisement

Log in

Wnt signaling inhibitor FH535 selectively inhibits cell proliferation and potentiates imatinib-induced apoptosis in myeloid leukemia cell lines

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Wnt signaling pathway plays a major role in leukemogenesis of myeloid leukemia. Aberrancy in its regulation results in hyperactivity of the pathway contributing to leukemia propagation and maintenance. To investigate effects of Wnt pathway inhibition in leukemia, we used human leukemia cell lines (i.e., K562, HL60, THP1, and Jurkat) and several Wnt inhibitors, including XAV939, IWP2 and FH535. Our results showed that leukemia cell lines (>95 % cells) had increased endogenous levels of β-catenin as compared to mononuclear cells from healthy donors (0 %). Among the tested inhibitors, FH535 demonstrated a markedly suppressive effect (IC50 = 358 nM) on mRNA levels of β-catenin target genes (LEF1, CCND1, and cMYC). In addition, FH535 significantly potentiated imatinib-induced apoptosis. Evaluation of erythrocyte and megakaryocyte lineage using flow cytometry demonstrated that the potentiation mechanism is independent of the developmental stage, and is more likely due to crosstalk between other pathways and β-catenin. FH535 also displayed antiproliferative properties in other cell lines used in this study. In summary, FH535 showed significantly high antiproliferative effects at submicromolar dosages, and additionally enhanced imatinib-induced apoptosis in human leukemia cell lines. Our results highlight its potential antileukemic promise when used in conjunction with other conventional therapeutic regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  2. Gough NR. Focus issue: Wnt and beta-catenin signaling in development and disease. Sci Signal 5(206):eg2.

  3. Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol. 2005;4(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M, et al. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell. 2011;9(4):345–56.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12(6):528–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327(5973):1650–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5(12):997–1014.

    Article  CAS  PubMed  Google Scholar 

  8. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382(6592):638–42.

    Article  CAS  PubMed  Google Scholar 

  9. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5(2):100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614–20.

    Article  CAS  PubMed  Google Scholar 

  11. Handeli S, Simon JA. A small-molecule inhibitor of Tcf/beta-catenin signaling down-regulates PPARgamma and PPARdelta activities. Mol Cancer Ther. 2008;7(3):521–9.

    Article  CAS  PubMed  Google Scholar 

  12. Gedaly R, Galuppo R, Daily MF, Shah M, Maynard E, Chen C, et al. Targeting the Wnt/beta-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One. 2014;9(6):e99272.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sebaugh JL. Guidelines for accurate EC50/IC50 estimation. Pharm Stat. 2011;10(2):128–34.

    Article  CAS  PubMed  Google Scholar 

  14. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423(6938):409–14.

    Article  CAS  PubMed  Google Scholar 

  15. Wang P, Henning SM, Heber D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One. 2010;5(4):e10202.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ. Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia. 2012;26(3):414–21.

    Article  CAS  PubMed  Google Scholar 

  17. Minke KS, Staib P, Puetter A, Gehrke I, Gandhirajan RK, Schlosser A, et al. Small molecule inhibitors of WNT signaling effectively induce apoptosis in acute myeloid leukemia cells. Eur J Haematol. 2009;82(3):165–75.

    Article  CAS  PubMed  Google Scholar 

  18. Albanell J, Rojo F, Averbuch S, Feyereislova A, Mascaro JM, Herbst R, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol. 2002;20(1):110–24.

    Article  CAS  PubMed  Google Scholar 

  19. Jacquel A, Herrant M, Legros L, Belhacene N, Luciano F, Pages G, et al. Imatinib induces mitochondria-dependent apoptosis of the Bcr-Abl-positive K562 cell line and its differentiation toward the erythroid lineage. FASEB J. 2003;17(14):2160–2.

    Article  CAS  PubMed  Google Scholar 

  20. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121(1):396–409.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia. 2007;21(5):926–35.

    CAS  PubMed  Google Scholar 

  22. Holtz MS, Forman SJ, Bhatia R. Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia. 2005;19(6):1034–41.

    Article  CAS  PubMed  Google Scholar 

  23. Hu Y, Chen Y, Douglas L, Li S. beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia. 2009;23(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  24. Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol. 2004;24(7):2890–904.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wachter J, Neureiter D, Alinger B, Pichler M, Fuereder J, Oberdanner C, et al. Influence of five potential anticancer drugs on wnt pathway and cell survival in human biliary tract cancer cells. Int J Biol Sci. 2012;8(1):15–29.

    Article  CAS  PubMed  Google Scholar 

  26. Iida J, Dorchak J, Lehman JR, Clancy R, Luo C, Chen Y, et al. FH535 inhibited migration and growth of breast cancer cells. PLoS One. 2012;7(9):e44418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99(1):319–25.

    Article  CAS  PubMed  Google Scholar 

  28. Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, Sone A, et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol. 2010;28(3):275–80.

    CAS  PubMed  Google Scholar 

  29. Suknuntha K, Ishii Y, Tao L, Hu K, McIntosh BE, Yang D, et al. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells. Stem Cell Res. 2015;15(3):678–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Kim JH, Koh SS, Stallcup MR. Synergistic effects of coactivators GRIP1 and beta-catenin on gene activation: cross-talk between androgen receptor and Wnt signaling pathways. J Biol Chem. 2004;279(6):4212–20.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci USA. 1999;96(22):12804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sadras T, Perugini M, Kok CH, Iarossi DG, Heatley SL, Brumatti G, et al. Interleukin-3-mediated regulation of beta-catenin in myeloid transformation and acute myeloid leukemia. J Leukoc Biol. 2014;96(1):83–91.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Mahidol University (A34/2557, Grant to KS), and The Central Instrument Facility (CIF), Faculty of Science, Mahidol University (58/023, Grant to KS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kran Suknuntha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12185_2016_2116_MOESM1_ESM.tif

Supplement Fig. 1. Yellowish FH535 at high concentration interferes the absorbance at 450 nm. A) Stock solution of FH535 at 10 mM. B) Absorbance value reading at 450, 515, 562, 595, 630, and 750 nm wavelengths were shown. Red line indicates absorbance value reading at 450 nm. Error bars indicate mean ± SD (n = 3) (TIFF 872 kb)

12185_2016_2116_MOESM2_ESM.tif

Supplement Fig. 2. MTT assay at 24 h after treatment. K562 was treated with 1 μM of XAV939, IWP2, FH535, and IM for 21 h prior to MTT assay. Error bars indicate mean ± SD (n = 3). * indicates significance compared with DMSO, p < 0.05. XAV, XAV939; IWP, IWP2; FH, FH535; IM, imatinib (TIFF 62 kb)

12185_2016_2116_MOESM3_ESM.tif

Supplement Fig. 3. Total intracellular β-catenin could not monitor dynamic changes in Wnt signaling activity. A) Representative flow cytometry dot plots show total intracellular β-catenin in K562 after treatment with 1 μM of XAV939, IWP2, FH535, and IM for 48 h. B) Bar graphs show mean percentages of β-catenin+ cells ± SD from 3 independent experiments. * indicates significance, p < 0.05 (TIFF 451 kb)

12185_2016_2116_MOESM4_ESM.tif

Supplement Fig. 4. FH535 did not induce apoptosis in HL60, THP1, and Jurkat. Cells were treated with 1 μM of FH535 for 48 h prior to analysis using annexin V and 7AAD (TIFF 498 kb)

12185_2016_2116_MOESM5_ESM.tif

Supplement Fig. 5. CD41a expression in K562 cells. Cells were treated with 1 μM of XAV939, IWP2, FH535, IM, and FH + IM for 48 h prior to analysis. Representative flow cytometry histograms show CD41a vs. cell counts gated from live cells (7AAD-). XAV, XAV939; IWP, IWP2; FH, FH535; IM, imatinib (TIFF 427 kb)

12185_2016_2116_MOESM6_ESM.tif

Supplement Fig. 6. Dose–response curves of FH535 in HL60, THP1, Jurkat, and PBMCs. HL60, THP1, Jurkat, and normal PBMCs were treated with various concentrations of FH535 for 24 h in triplicate. Non-linear sigmoidal curve fit was generated from percentage of viable cells compared with no treatment control using trypan blue staining. Estimated IC50 was interpolated from the dose–response curve at half maximal effect. PBMCs were from 3 healthy donors. Error bars indicate mean ± SD from 2 independent experiments (TIFF 95 kb)

12185_2016_2116_MOESM7_ESM.tif

Supplement Fig. 7. Effect of FH535 + imatinib combination on apoptosis in primary CML mononuclear cells. Mononuclear cells from two CML patients were treated with 0.2 % DMSO, 1 μM of FH535, and FH + IM for 48 h prior to analysis using flow cytometry. Representative dot plots show 7AAD vs. annexin V and percentage of annexin V+ cell (TIFF 329 kb)

Supplement Table 1. Sequences of primers used in the study (DOCX 46 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suknuntha, K., Thita, T., Togarrati, P.P. et al. Wnt signaling inhibitor FH535 selectively inhibits cell proliferation and potentiates imatinib-induced apoptosis in myeloid leukemia cell lines. Int J Hematol 105, 196–205 (2017). https://doi.org/10.1007/s12185-016-2116-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2116-x

Keywords

Navigation