Skip to main content
Log in

Polyphosphate: a link between platelets, coagulation and inflammation

  • Progress in Hematology
  • Current understanding of thrombosis and hemostasis—from bench to bedside
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Inorganic polyphosphate (polyP) is abundant in biological organisms. PolyP is a major component of dense granules of human platelets and is secreted upon platelet activation. Studies from our lab and others have shown that polyP is a potent modulator of the blood clotting cascade, acting as a pro-hemostatic, prothrombotic and proinflammatory agent depending on its polymer size and location. PolyP may represent at least one of the long-sought (patho)physiologic activators of the contact pathway of blood clotting, and its actions may also help to explain previously unexplained abilities of activated platelets to enhance plasma clotting reactions. PolyP may have utility as a hemostatic agent to control bleeding, and conversely, polyP antagonists might have utility as antithrombotic/anti-inflammatory agents with reduced bleeding side effects. The detailed molecular mechanisms by which polyP modulates blood clotting reactions still remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brown MR, Kornberg A. Inorganic polyphosphate in the origin and survival of species. Proc Natl Acad Sci USA. 2004;101:16085–7.

    Article  PubMed  CAS  Google Scholar 

  2. Ault-Riché D, Fraley CD, Tzeng CM, Kornberg A. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J Bacteriol. 1998;180:1841–7.

    PubMed  Google Scholar 

  3. Kornberg A, Rao NN, Ault-Riché D. Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem. 1999;68:89–125.

    Article  PubMed  CAS  Google Scholar 

  4. Lorenz B, Schroder HC. Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta. 2001;1547:254–61.

    Article  PubMed  CAS  Google Scholar 

  5. Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci USA. 2006;103:903–8.

    Article  PubMed  CAS  Google Scholar 

  6. Lorenz B, Leuck J, Kohl D, Muller WE, Schroder HC. Anti-HIV-1 activity of inorganic polyphosphates. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;14:110–8.

    Article  PubMed  CAS  Google Scholar 

  7. Wang L, Fraley CD, Faridi J, Kornberg A, Roth RA. Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells. Proc Natl Acad Sci USA. 2003;100:11249–54.

    Article  PubMed  CAS  Google Scholar 

  8. Han KY, Hong BS, Yoon YJ, Yoon CM, Kim YK, Kwon YG, et al. Polyphosphate blocks tumour metastasis via anti-angiogenic activity. Biochem J. 2007;406:49–55.

    Article  PubMed  CAS  Google Scholar 

  9. Hernandez-Ruiz L, Gonzalez-Garcia I, Castro C, Brieva JA, Ruiz FA. Inorganic polyphosphate and specific induction of apoptosis in human plasma cells. Haematologica. 2006;91:1180–6.

    PubMed  CAS  Google Scholar 

  10. Kawazoe Y, Shiba T, Nakamura R, Mizuno A, Tsutsumi K, Uematsu T, et al. Induction of calcification in MC3T3-E1 cells by inorganic polyphosphate. J Dent Res. 2004;83:613–8.

    Article  PubMed  CAS  Google Scholar 

  11. Smith SA, Morrissey JH. Polyphosphate as a general procoagulant agent. J Thromb Haemost. 2008;6:1750–6.

    Article  PubMed  CAS  Google Scholar 

  12. Smith SA, Morrissey JH. Polyphosphate enhances fibrin clot structure. Blood. 2008;112:2810–6.

    Article  PubMed  CAS  Google Scholar 

  13. Müller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139:1143–56.

    Article  PubMed  Google Scholar 

  14. Mutch NJ, Myles T, Leung LL, Morrissey JH. Polyphosphate binds with high affinity to exosite II of thrombin. J Thromb Haemost. 2010;8:548–55.

    Article  PubMed  CAS  Google Scholar 

  15. Smith SA, Choi SH, Davis-Harrison R, Huyck J, Boettcher J, Rienstra CM, et al. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood. 2010;116:4353–9.

    Article  PubMed  CAS  Google Scholar 

  16. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and 4. Blood. 2011;118:1952–61.

    Article  PubMed  CAS  Google Scholar 

  17. Choi SH, Smith SA, Morrissey JH. Polyphosphate is a cofactor for the activation of factor XI by thrombin. Blood. 2011;118:6963–70.

    Article  PubMed  CAS  Google Scholar 

  18. Mutch NJ, Engel R, Uitte de Willige S, Philippou H, Ariens RA. Polyphosphate modifies the fibrin network and down-regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin. Blood. 2010;115:3980–8.

    Google Scholar 

  19. Docampo R, Moreno SN. Acidocalcisomes. Cell Calcium. 2011;50:113–9.

    Article  PubMed  CAS  Google Scholar 

  20. Ruiz FA, Lea CR, Oldfield E, Docampo R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem. 2004;279:44250–7.

    Article  PubMed  CAS  Google Scholar 

  21. Dean GE, Fishkes H, Nelson PJ, Rudnick G. The hydrogen ion-pumping adenosine triphosphatase of platelet dense granule membrane. Differences from F1F0- and phosphoenzyme-type ATPases. J Biol Chem. 1984;259:9569–74.

    PubMed  CAS  Google Scholar 

  22. White JG. The dense bodies of human platelets: inherent electron opacity of the serotonin storage particles. Blood. 1969;33:598–606.

    PubMed  CAS  Google Scholar 

  23. Fukami MH, Dangelmaier CA, Bauer JS, Holmsen H. Secretion, subcellular localization and metabolic status of inorganic pyrophosphate in human platelets. A major constituent of the amine-storing granules. Biochem J. 1980;192:99–105.

    PubMed  CAS  Google Scholar 

  24. Brown MR, Kornberg A. The long and short of it—polyphosphate, PPK and bacterial survival. Trends Biochem Sci. 2008;33:284–90.

    Article  PubMed  CAS  Google Scholar 

  25. Morrissey JH. Tissue factor: a key molecule in hemostatic and nonhemostatic systems. Int J Hematol. 2004;79:103–8.

    Article  PubMed  CAS  Google Scholar 

  26. Colman RW, Schmaier AH. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood. 1997;90:3819–43.

    PubMed  CAS  Google Scholar 

  27. Gailani D, Renné T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol. 2007;27:2507–13.

    Article  PubMed  CAS  Google Scholar 

  28. Müller F, Renné T. Novel roles for factor XII-driven plasma contact activation system. Curr Opin Hematol. 2008;15:516–21.

    Article  PubMed  Google Scholar 

  29. Frick IM, Akesson P, Herwald H, Morgelin M, Malmsten M, Nagler DK, et al. The contact system—a novel branch of innate immunity generating antibacterial peptides. EMBO J. 2006;25:5569–78.

    Article  PubMed  CAS  Google Scholar 

  30. Ben Nasr A, Wistedt A, Ringdahl U, Sjobring U. Streptokinase activates plasminogen bound to human group C and G streptococci through M-like proteins. Eur J Biochem. 1994;222:267–76.

    Article  PubMed  CAS  Google Scholar 

  31. Ben Nasr A, Olsen A, Sjobring U, Muller-Esterl W, Bjorck L. Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli. Mol Microbiol. 1996;20:927–35.

    Article  PubMed  CAS  Google Scholar 

  32. Kalter ES, van Dijk WC, Timmerman A, Verhoef J, Bouma BN. Activation of purified human plasma prekallikrein triggered by cell wall fractions of Escherichia coli and Staphylococcus aureus. J Infect Dis. 1983;148:682–91.

    Article  PubMed  CAS  Google Scholar 

  33. Loza JP, Gurewich V, Johnstone M, Pannell R. Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: a mechanism for targeting the factor XII dependent intrinsic pathway of fibrinolysis. Thromb Haemost. 1994;71:347–52.

    PubMed  CAS  Google Scholar 

  34. Ghebrehiwet B, Randazzo BP, Dunn JT, Silverberg M, Kaplan AP. Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest. 1983;71:1450–6.

    Article  PubMed  CAS  Google Scholar 

  35. Colman RW, Jameson BA, Lin Y, Johnson D, Mousa SA. Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood. 2000;95:543–50.

    PubMed  CAS  Google Scholar 

  36. Jacobsen S, Kriz M. Some data on two purified kininogens from human plasma. Br J Pharmacol Chemother. 1967;29:25–36.

    PubMed  CAS  Google Scholar 

  37. Choi SH, Collins JN, Smith SA, Davis-Harrison RL, Rienstra CM, Morrissey JH. Phosphoramidate end labeling of inorganic polyphosphates: facile manipulation of polyphosphate for investigating and modulating its biological activities. Biochemistry. 2010;49:9935–41.

    Article  PubMed  CAS  Google Scholar 

  38. Lawson JH, Kalafatis M, Stram S, Mann KG. A model for the tissue factor pathway to thrombin. I. An empirical study. J Biol Chem. 1994;269:23357–66.

    PubMed  CAS  Google Scholar 

  39. Orfeo T, Brufatto N, Nesheim ME, Xu H, Butenas S, Mann KG. The factor V activation paradox. J Biol Chem. 2004;279:19580–91.

    Article  PubMed  CAS  Google Scholar 

  40. Broze GJ Jr. Tissue factor pathway inhibitor and the current concept of blood coagulation. Blood Coagul Fibrinolysis. 1995;6(Suppl 1):S7–13.

    Article  PubMed  CAS  Google Scholar 

  41. Mast AE, Broze GJ Jr. Physiological concentrations of tissue factor pathway inhibitor do not inhibit prothrombinase. Blood. 1996;87:1845–50.

    PubMed  CAS  Google Scholar 

  42. Collen A, Smorenburg SM, Peters E, Lupu F, Koolwijk P, Van Noorden C, et al. Unfractionated and low molecular weight heparin affect fibrin structure and angiogenesis in vitro. Cancer Res. 2000;60:6196–200.

    PubMed  CAS  Google Scholar 

  43. Parise P, Morini M, Agnelli G, Ascani A, Nenci GG. Effects of low molecular weight heparins on fibrin polymerization and clot sensitivity to t-PA-induced lysis. Blood Coagul Fibrinolysis. 1993;4:721–7.

    PubMed  CAS  Google Scholar 

  44. Nenci GG, Parise P, Morini M, Rossini A, Agnelli G. Fibrin clots obtained from plasma containing heparin show a higher sensitivity to t-PA-induced lysis. Blood Coagul Fibrinolysis. 1992;3:279–85.

    Article  PubMed  CAS  Google Scholar 

  45. Carr ME Jr, Cromartie R, Gabriel DA. Effect of homo poly(L-amino acids) on fibrin assembly: role of charge and molecular weight. Biochemistry. 1989;28:1384–8.

    Article  PubMed  CAS  Google Scholar 

  46. Walsh PN, Gailani D. Factor XI. In: Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ, editors. Hemostasis and thrombosis: basic principles and clinical practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 221–33.

    Google Scholar 

  47. Naito K, Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J Biol Chem. 1991;266:7353–8.

    PubMed  CAS  Google Scholar 

  48. Gailani D, Broze GJ Jr. Factor XI activation in a revised model of blood coagulation. Science. 1991;253:909–12.

    Article  PubMed  CAS  Google Scholar 

  49. Gailani D, Broze GJ Jr. Factor XII-independent activation of factor XI in plasma: effects of sulfatides on tissue factor-induced coagulation. Blood. 1993;82:813–9.

    PubMed  CAS  Google Scholar 

  50. Gailani D, Broze GJ Jr. Effects of glycosaminoglycans on factor XI activation by thrombin. Blood Coagul Fibrinolysis. 1993;4:15–20.

    PubMed  CAS  Google Scholar 

  51. Pedicord DL, Seiffert D, Blat Y. Feedback activation of factor XI by thrombin does not occur in plasma. Proc Natl Acad Sci USA. 2007;104:12855–60.

    Article  PubMed  CAS  Google Scholar 

  52. Caen J, Wu Q. Hageman factor, platelets and polyphosphates: early history and recent connection. J Thromb Haemost. 2010;8:1670–4.

    Article  PubMed  CAS  Google Scholar 

  53. Ong SY, Wu J, Moochhala SM, Tan MH, Lu J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29:4323–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The author is a coinventor on pending patent applications covering medical uses for polyphosphates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Morrissey.

About this article

Cite this article

Morrissey, J.H. Polyphosphate: a link between platelets, coagulation and inflammation. Int J Hematol 95, 346–352 (2012). https://doi.org/10.1007/s12185-012-1054-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1054-5

Keywords

Navigation