Skip to main content
Log in

The mechanisms of cancer immunoescape and development of overcoming strategies

  • Progress in Hematology
  • Cancer immunology
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Cancer-induced immunosuppression is a major problem as it reduces the anti-tumor effects of immunotherapies. In cancer tissues, cancer cells, immune cells, and other stromal cells interact and create an immunosuppressive microenvironment through a variety of immunosuppressive factors. Some cancer subpopulations such as cancer cells undergoing epithelial–mesenchymal transition and cancer stem-like cells have immunosuppressive and immunoresistant properties. The production of immunosuppressive factors by cancer cells is mechanistically attributed to oncogenic signals frequently activated in cancer cells, including the STAT3, MAPK, NF-κB, and Wnt/β-catenin signals, which are upstream events leading to immunosuppressive cascades. Moreover, some of these signals are also activated in immunosuppressive immune cells stimulated by cancer-derived factors and contribute to their immunosuppressive activities. Therefore, targeting these signals both in cancer cells and immunosuppressive immune cells may result in the restoration of immunocompetence in cancer patients and improve current immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rosenberg SA, Yang JC, et al. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dudley ME, Yang JC, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26:5233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kawakami Y, Fujita T, et al. Identification of human tumor antigens and its implications for diagnosis and treatment of cancer. Cancer Sci. 2004;95:784–91.

    Article  CAS  PubMed  Google Scholar 

  4. Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008;27:5869–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science. 2009;324:1670–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spisek R, Kukreja A, et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med. 2007;204:831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ueda R, Ohkusu-Tsukada K, et al. Identification of HLA-A2- and A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy. Int J Cancer. 2009;126:919–29.

    Google Scholar 

  8. Wang E, Voiculescu S, et al. Clonal persistence and evolution during a decade of recurrent melanoma. J Invest Dermatol. 2006;126:1372–7.

    Article  CAS  PubMed  Google Scholar 

  9. Mani SA, Guo W, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kudo-Saito C, Shirako H, et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009;15:195–206.

    Article  CAS  PubMed  Google Scholar 

  11. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.

    Article  CAS  PubMed  Google Scholar 

  12. Groh V, Wu J, et al. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002;419:734–8.

    Article  CAS  PubMed  Google Scholar 

  13. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467–77.

    Article  CAS  PubMed  Google Scholar 

  14. Brahmer JR, Drake CG, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawasaki BT, Farrar WL. Cancer stem cells, CD200 and immunoevasion. Trends Immunol. 2008;29:464–8.

    Article  CAS  PubMed  Google Scholar 

  16. Tonks A, Hills R, et al. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia. 2007;21:566–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ohyama M, Terunuma A, et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest. 2006;116:249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moreaux J, Hose D, et al. CD200 is a new prognostic factor in multiple myeloma. Blood. 2006;108:4194–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kawasaki BT, Mistree T, et al. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun. 2007;364:778–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sumimoto H, Imabayashi F, et al. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203:1651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu H, Kortylewski M, et al. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.

    Article  CAS  PubMed  Google Scholar 

  22. Petermann KB, Rozenberg GI, et al. CD200 is induced by ERK and is a potential therapeutic target in melanoma. J Clin Invest. 2007;117:3922–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kortylewski M, Kujawski M, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med. 2005;11:1314–21.

    Article  CAS  PubMed  Google Scholar 

  24. Parsa AT, Waldron JS, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13:84–8.

    Article  CAS  PubMed  Google Scholar 

  25. Manicassamy S, Reizis B, et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science. 2010;329:849–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding Y, Shen S, et al. Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med. 2008;14:162–9.

    Article  CAS  PubMed  Google Scholar 

  27. Solit DB, Garraway LA, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;439:358–62.

    Article  CAS  PubMed  Google Scholar 

  28. Kefford R, Arkenau H, et al. Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol. 2010;28:8503.

    Article  Google Scholar 

  29. Flaherty KT, Puzanov I, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hipp MM, Hilf N, et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood. 2008;111:5610–20.

    Article  CAS  PubMed  Google Scholar 

  31. Ozao-Choy J, Ma G, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69:2514–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salama P, Phillips M, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–92.

    Article  PubMed  Google Scholar 

  33. Udagawa M, Kudo-Saito C, et al. Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette-Guerin cell wall skeleton stimulation. Clin Cancer Res. 2006;12:7465–75.

    Article  CAS  PubMed  Google Scholar 

  34. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010;127:759–67.

    CAS  PubMed  Google Scholar 

  35. Hodi FS, O’Day SJ, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Curiel TJ, Coukos G, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto K, Utsunomiya A, et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010;28:1591–8.

    Article  CAS  PubMed  Google Scholar 

  38. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsukamoto N, Okada S, et al. Impairment of plasmacytoid dendritic cells for IFN production by the ligand for immunoglobulin-like transcript 7 expressed on human cancer cells. Clin Cancer Res. 2009;15:5733–43.

    Article  CAS  PubMed  Google Scholar 

  40. Udagawa T, Wood M. Tumor-stromal cell interactions and opportunities for therapeutic intervention. Curr Opin Pharmacol. 2010;10:369–74.

    Article  CAS  PubMed  Google Scholar 

  41. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  CAS  PubMed  Google Scholar 

  42. Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res. 2001;264:169–84.

    Article  CAS  PubMed  Google Scholar 

  43. Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev. 2009;19:67–73.

    Article  PubMed  Google Scholar 

  44. Orimo A, Gupta PB, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    Article  CAS  PubMed  Google Scholar 

  45. Augsten M, Hagglof C, et al. CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA. 2009;106:3414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patocs A, Zhang L, et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med. 2007;357:2543–51.

    Article  CAS  PubMed  Google Scholar 

  47. Liao D, Luo Y, et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One. 2009;4:e7965.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mishra PJ, Mishra PJ, et al. Mesenchymal stem cells: flip side of the coin. Cancer Res. 2009;69:1255–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kidd S, Spaeth E, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells. 2009;27:2614–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Direkze NC, Hodivala-Dilke K, et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 2004;64:8492–5.

    Article  CAS  PubMed  Google Scholar 

  51. Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 2010;29:249–61.

    Article  PubMed  Google Scholar 

  52. Karnoub AE, Dash AB, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.

    Article  CAS  PubMed  Google Scholar 

  53. Uccelli A, Moretta L, et al. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article  CAS  PubMed  Google Scholar 

  54. Le Blanc K, Frassoni F, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579–86.

    Article  CAS  PubMed  Google Scholar 

  55. Djouad F, Bony C, et al. Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation. 2006;82:1060–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Yaguchi.

About this article

Cite this article

Yaguchi, T., Sumimoto, H., Kudo-Saito, C. et al. The mechanisms of cancer immunoescape and development of overcoming strategies. Int J Hematol 93, 294–300 (2011). https://doi.org/10.1007/s12185-011-0799-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-0799-6

Keywords

Navigation