Skip to main content
Log in

Return to Play After Knee Articular Cartilage Restoration: Surgical Options, Rehabilitation Protocols, and Performance Outcomes

  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Numerous cartilage restoration techniques have proven to be effective in the treatment of articular cartilage defects. The ultimate goal of these procedures is to improve pain and function, thereby increasing the likelihood of a patient’s return to physical activity. Postoperative rehabilitation is a key component for a successful and expedient return to activities. The purpose of this article is to review the current literature regarding common surgical options, rehabilitation protocols, and performance outcomes after operative treatment of articular cartilage defects.

Recent Findings

Studies have demonstrated improved short- to long-term outcomes in a majority of techniques. However, the clinical benefits of microfracture are short-lived, which has led to the use of alternative procedures. Rehabilitation protocols are not standardized, but emphasis has been placed on bracing, weightbearing, early continuous passive range of motion, and strengthening to improve function. There is growing evidence to suggest that accelerated rehabilitation after matrix-induced autologous chondrocyte implantation may result in superior outcomes compared to delayed rehabilitation. Overall, most techniques result in satisfactory rates of return to play, though existing comparative studies typically include patients with heterogeneous pathology, complicating effective synthesis of outcomes data.

Summary

In appropriately selected patients, cartilage restoration procedures after articular cartilage injury result in favorable patient-reported clinical outcomes and high rates of return to play. While studies emphasize the critical role that rehabilitation plays with respect to outcomes after surgery, there are substantial inconsistencies in protocols across techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Campbell AB, Pineda M, Harris JD, Flanigan DC. Return to sport after articular cartilage repair in athletes’ knees: a systematic review. Arthroscopy. 2016;32(4):651-68 e1. https://doi.org/10.1016/j.arthro.2015.08.028.

    Article  PubMed  Google Scholar 

  2. Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams RJ 3rd. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2017;25(10):3186–96. https://doi.org/10.1007/s00167-016-4262-3.

    Article  PubMed  Google Scholar 

  3. • Robinson PG, Williamson T, Murray IR, Al-Hourani K, White TO. Sporting participation following the operative management of chondral defects of the knee at mid-term follow up: a systematic review and meta-analysis. J Exp Orthop. 2020;7(1):76. https://doi.org/10.1186/s40634-020-00295-x. This study conducted a systematic review and meta-analysis of 29 studies that evaluated outcomes following knee chondral defects. It examined various factors that could potentially impact return to play rates and presented separate findings for autologous chondrocyte implantation and third-generation matrix-induced autologous chondrocyte implantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Hurley ET, Davey MS, Jamal MS, Manjunath AK, Alaia MJ, Strauss EJ. Return-to-play and rehabilitation protocols following cartilage restoration procedures of the knee: a systematic review. Cartilage. 2021;13(1_suppl):907S-14S. https://doi.org/10.1177/1947603519894733. Systematic review of 179 studies of commonly used cartilage restoration techniques that synthesizes return to play rates, range of motion protocols, weightbearing protocols, and return to play guidelines.

    Article  PubMed  Google Scholar 

  5. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;391 Suppl:S362-9. https://doi.org/10.1097/00003086-200110001-00033.

    Article  Google Scholar 

  6. Bae DK, Yoon KH, Song SJ. Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy. 2006;22(4):367–74. https://doi.org/10.1016/j.arthro.2006.01.015.

    Article  PubMed  Google Scholar 

  7. Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage—why does hyaline cartilage fail to repair? Adv Drug Deliv Rev. 2019;146:289–305.

    Article  CAS  PubMed  Google Scholar 

  8. Gomoll AH. Microfracture and augments. J Knee Surg. 2012;25(1):9–15. https://doi.org/10.1055/s-0031-1299654.

    Article  PubMed  Google Scholar 

  9. Asik M, Ciftci F, Sen C, Erdil M, Atalar A. The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy. 2008;24(11):1214–20. https://doi.org/10.1016/j.arthro.2008.06.015.

    Article  PubMed  Google Scholar 

  10. • van Tuijn IM, Emanuel KS, van Hugten PPW, Jeuken R, Emans PJ. Prognostic factors for the clinical outcome after microfracture treatment of chondral and osteochondral defects in the knee joint: a systematic review. Cartilage. 2023;14(1):5–16. https://doi.org/10.1177/19476035221147680. Recent systematic review exploring prognostic factors for clinical outcomes after microfracture. This study provides reccomendations for the ideal microfracture candidate and future directions for research regarding this population.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2014;22:1986–96.

    Article  PubMed  Google Scholar 

  12. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–63. https://doi.org/10.1177/0363546509335086.

    Article  PubMed  Google Scholar 

  13. Solheim E, Hegna J, Inderhaug E, yen J, Harlem T, Strand T. Results at 10–14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1587–93. https://doi.org/10.1007/s00167-014-3443-1.

    Article  PubMed  Google Scholar 

  14. Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):670–706. https://doi.org/10.1007/s00167-019-05359-9.

    Article  PubMed  Google Scholar 

  15. • Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E. Randomized study of long-term (15–17 years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. Am J Sports Med. 2018;46(4):826–31. https://doi.org/10.1177/0363546517745281. A long-term (15-year minimum) follow-up study of a randomized controlled trial comparing two techniques with similar surgical indications.

    Article  PubMed  Google Scholar 

  16. Gou GH, Tseng FJ, Wang SH, Chen PJ, Shyu JF, Weng CF, et al. Autologous chondrocyte implantation versus microfracture in the knee: a meta-analysis and systematic review. Arthroscopy. 2020;36(1):289–303. https://doi.org/10.1016/j.arthro.2019.06.033.

    Article  PubMed  Google Scholar 

  17. Bert JM. Abandoning microfracture of the knee: has the time come? Arthroscopy: J Arthrosc Relat Surg. 2015;31(3):501–5.

    Article  Google Scholar 

  18. Erggelet C, Vavken P. Microfracture for the treatment of cartilage defects in the knee joint—a golden standard? J Clin Orthop Trauma. 2016;7(3):145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Minas T, Ogura T, Headrick J, Bryant T. Autologous chondrocyte implantation “sandwich” technique compared with autologous bone grafting for deep osteochondral lesions in the knee. Am J Sports Med. 2018;46(2):322–32.

    Article  PubMed  Google Scholar 

  20. Beck A, Murphy DJ, Carey-Smith R, Wood DJ, Zheng MH. Treatment of articular cartilage defects with microfracture and autologous matrix-induced chondrogenesis leads to extensive subchondral bone cyst formation in a sheep model. Am J Sports Med. 2016;44(10):2629–43.

    Article  PubMed  Google Scholar 

  21. Manco A, Goderecci R, Rughetti A, De Giorgi S, Necozione S, Bernardi A, et al. Microfracture versus microfracture and platelet-rich plasma: arthroscopic treatment of knee chondral lesions. A two-year follow-up study. Joints. 2016;4(3):142–7. https://doi.org/10.11138/jts/2016.4.3.142.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jin QH, Chung YW, Na SM, Ahn HW, Jung DM, Seon JK. Bone marrow aspirate concentration provided better results in cartilage regeneration to microfracture in knee of osteoarthritic patients. Knee Surg Sports Traumatol Arthrosc. 2021;29(4):1090–7. https://doi.org/10.1007/s00167-020-06099-x.

    Article  PubMed  Google Scholar 

  23. Yang HY, Song EK, Kang SJ, Kwak WK, Kang JK, Seon JK. Allogenic umbilical cord blood-derived mesenchymal stromal cell implantation was superior to bone marrow aspirate concentrate augmentation for cartilage regeneration despite similar clinical outcomes. Knee Surg Sports Traumatol Arthrosc. 2022;30(1):208–18. https://doi.org/10.1007/s00167-021-06450-w.

    Article  PubMed  Google Scholar 

  24. Gobbi A, Whyte GP. Long-term clinical outcomes of one-stage cartilage repair in the knee with hyaluronic acid-based scaffold embedded with mesenchymal stem cells sourced from bone marrow aspirate concentrate. Am J Sports Med. 2019;47(7):1621–8. https://doi.org/10.1177/0363546519845362.

    Article  PubMed  Google Scholar 

  25. Arshi A, Fabricant PD, Go DE, Williams RJ, McAllister DR, Jones KJ. Can biologic augmentation improve clinical outcomes following microfracture for symptomatic cartilage defects of the knee? A systematic review. Cartilage. 2018;9(2):146–55.

    Article  PubMed  Google Scholar 

  26. Crowley SG, Swindell HW, Saltzman BM, Ahmad CS, Popkin CA, Trofa DP. Rehabilitation variability following femoral condyle and patellofemoral microfracture surgery of the knee. Cartilage. 2021;13(1_suppl):1801S-13S.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gill TJ, McCulloch PC, Glasson SS, Blanchet T, Morris EA. Chondral defect repair after the microfracture procedure: a nonhuman primate model. Am J Sports Med. 2005;33(5):680–5.

    Article  PubMed  Google Scholar 

  28. Garretson Iii RB, Katolik LI, Verma N, Beck PR, Bach BR, Cole BJ. Contact pressure at osteochondral donor sites in the patellofemoral joint. Am J Sports Med. 2004;32(4):967–74.

    Article  Google Scholar 

  29. • Du PZ, Markolf KL, Boguszewski DV, Yamaguchi KT, Lama CJ, McAllister DR, et al. Effects of proud large osteochondral plugs on contact forces and knee kinematics: a robotic study. Am J Sports Med. 2018;46(9):2122–7. This study provides evidence in support of achieving a congruent articular surface when using osteochondral plugs.

    Article  PubMed  Google Scholar 

  30. Patil S, Butcher W, D’Lima DD, Steklov N, Bugbee WD, Hoenecke HR. Effect of osteochondral graft insertion forces on chondrocyte viability. Am J Sports Med. 2008;36(9):1726–32.

    Article  PubMed  Google Scholar 

  31. Ambra LF, de Girolamo L, Mosier B, Gomoll AH. Interventions for cartilage disease: current state-of-the-art and emerging technologies. Arthritis Rheumatol. 2017;69(7):1363–73.

    Article  PubMed  Google Scholar 

  32. Gudas R, Gudaite A, Pocius A, Gudiene A, Cekanauskas E, Monastyreckiene E, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med. 2012;40(11):2499–508.

    Article  PubMed  Google Scholar 

  33. Solheim E, Hegna J, Inderhaug E. Long-term survival after microfracture and mosaicplasty for knee articular cartilage repair: a comparative study between two treatments cohorts. Cartilage. 2020;11(1):71–6.

    Article  PubMed  Google Scholar 

  34. Brophy RH, Wojahn RD, Lamplot JD. Cartilage restoration techniques for the patellofemoral joint. J Am Acad Orthop Surg. 2017;25(5):321–9.

    Article  PubMed  Google Scholar 

  35. • Mestriner AB, Ackermann J, Gomoll AH. Patellofemoral cartilage repair. Curr Rev Musculoskelet Med. 2018;11:188–200. Comprehensive review of cartilage restoration techniques for defects located in the patellofemoral joint.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Figueroa D, Calvo Rodriguez R, Donoso R, Espinoza J, Vaisman A, Yañez C. High-grade patellar chondral defects: promising results from management with osteochondral autografts. Orthop J Sports Med. 2020;8(7):2325967120933138.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Donoso R, Figueroa D, Espinoza J, Yanez C, Saavedra J. Osteochondral autologous transplantation for treating patellar high-grade chondral defects: a systematic review. Orthop J Sports Med. 2019;7(10):2325967119876618. https://doi.org/10.1177/2325967119876618.

    Article  PubMed  PubMed Central  Google Scholar 

  38. • Werner BC, Cosgrove CT, Gilmore CJ, Lyons ML, Miller MD, Brockmeier SF, et al. Accelerated return to sport after osteochondral autograft plug transfer. Orthop J Sports Med. 2017;5(4):2325967117702418. This study assesses how accelerated weightbearing and return to play may affect outcomes after ostechondral autograft transfer.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Crowley SG, Pedersen A, Fortney TA, Swindell HW, Saltzman BM, Popkin CA, et al. Rehabilitation variability following osteochondral autograft and allograft transplantation of the knee. Cartilage. 2022;13(2):19476035221093070.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pisanu G, Cottino U, Rosso F, Blonna D, Marmotti AG, Bertolo C, et al. Large osteochondral allografts of the knee: surgical technique and indications. Joints. 2018;6(1):42–53.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Williams SK, Amiel D, Ball ST, Allen RT, Wong VW, Chen AC, et al. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am Vol. 2003;85(11):2111–20.

    Article  Google Scholar 

  42. Wang D, Jones KJ, Eliasberg CD, Pais MD, Rodeo SA, Williams Iii RJ. Condyle-specific matching does not improve midterm clinical outcomes of osteochondral allograft transplantation in the knee. Jbjs. 2017;99(19):1614–20.

    Article  Google Scholar 

  43. Welton KL, Logterman S, Bartley JH, Vidal AF, McCarty EC. Knee cartilage repair and restoration: common problems and solutions. Clin Sports Med. 2018;37(2):307–30.

    Article  PubMed  Google Scholar 

  44. • Frank RM, Lee S, Levy D, Poland S, Smith M, Scalise N, et al. Osteochondral allograft transplantation of the knee: analysis of failures at 5 years. Am J Sports Med. 2017;45(4):864–74. This case series of 180 patients with a mean 5-year follow-up provides evidence of high reoperation rates following osteochondral allograft transplantation.

    Article  PubMed  Google Scholar 

  45. Familiari F, Cinque ME, Chahla J, Godin JA, Olesen ML, Moatshe G, et al. Clinical outcomes and failure rates of osteochondral allograft transplantation in the knee: a systematic review. Am J Sports Med. 2018;46(14):3541–9.

    Article  PubMed  Google Scholar 

  46. Kane MS, Lau B, Crawford DC. Rehabilitation and postoperative management practices after osteochondral allograft transplants to the distal femur: a report from the metrics of osteochondral allografts (MOCA) study group 2016 survey. Sports Health. 2017;9(6):555–63.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Stark M, Rao S, Gleason B, Jack RA, Tucker B, Hammoud S, et al. Rehabilitation and return-to-play criteria after fresh osteochondral allograft transplantation: a systematic review. Orthop J Sports Med. 2021;9(7):23259671211017136. Systematic review of 62 studies reporting vast heteregeneity in rehabilitation and return to play criteria after osteochondral allograft transplantation.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan AJTK. A prospective, randomized study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee. 2006;13(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  49. Andriolo L, Reale D, Di Martino A, De Filippis R, Sessa A, Zaffagnini S, et al. Long-term results of arthroscopic matrix-assisted autologous chondrocyte transplantation: a prospective follow-up at 15 years. Am J Sports Med. 2020;48(12):2994–3001. https://doi.org/10.1177/0363546520962224.

    Article  PubMed  Google Scholar 

  50. Ogura T, Merkely G, Bryant T, Winalski CS, Minas T. Autologous chondrocyte implantation “segmental-sandwich” technique for deep osteochondral defects in the knee: clinical outcomes and correlation with magnetic resonance imaging findings. Orthop J Sports Med. 2019;7(5):2325967119847173.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pareek A, Carey JL, Reardon PJ, Peterson L, Stuart MJ, Krych AJ. Long-term outcomes after autologous chondrocyte implantation: a systematic review at mean follow-up of 11.4 years. Cartilage. 2016;7(4):298–308. https://doi.org/10.1177/1947603516630874.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kreuz PC, Kalkreuth RH, Niemeyer P, Uhl M, Erggelet C. Long-term clinical and MRI results of matrix-assisted autologous chondrocyte implantation for articular cartilage defects of the knee. Cartilage. 2019;10(3):305–13. https://doi.org/10.1177/1947603517730688.

    Article  PubMed  Google Scholar 

  53. Della Villa S, Kon E, Filardo G, Ricci M, Vincentelli F, Delcogliano M, et al. Does intensive rehabilitation permit early return to sport without compromising the clinical outcome after arthroscopic autologous chondrocyte implantation in highly competitive athletes? Am J Sports Med. 2010;38(1):68–77.

    Article  PubMed  Google Scholar 

  54. Ebert JR, Robertson WB, Lloyd DG, Zheng MH, Wood DJ, Ackland T. A prospective, randomized comparison of traditional and accelerated approaches to postoperative rehabilitation following autologous chondrocyte implantation: 2-year clinical outcomes. Cartilage. 2010;1(3):180–7. https://doi.org/10.1177/1947603510368898.

    Article  PubMed  PubMed Central  Google Scholar 

  55. • Ebert JR, Fallon M, Wood DJ, Janes GC. An accelerated 6-week return to full weight bearing after matrix-induced autologous chondrocyte implantation results in good clinical outcomes to 5 years post-surgery. Knee Surg Sports Traumatol Arthrosc. 2021;29(11):3825–33. https://doi.org/10.1007/s00167-020-06422-6. This study provides evidence in support of accelerated rehabilitation after matrix-induced autologous chondrocyte implantation.

    Article  PubMed  Google Scholar 

  56. Han QX, Tong Y, Zhang L, Sun J, Ma J, Liu X, et al. Comparative efficacy of osteochondral autologous transplantation and microfracture in the knee: an updated meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2023;143(1):317–28. https://doi.org/10.1007/s00402-021-04075-9.

    Article  PubMed  Google Scholar 

  57. Gudas R, Kalesinskas RJ, Kimtys V, Stankeviius E, Toliusis V, Bernotaviius G, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy: J Arthrosc Relat Surg. 2005;21(9):1066–75.

    Article  Google Scholar 

  58. Crawford ZT, Schumaier AP, Glogovac G, Grawe BM. Return to sport and sports-specific outcomes after osteochondral allograft transplantation in the knee: a systematic review of studies with at least 2 years’ mean follow-up. Arthroscopy. 2019;35(6):1880–9. https://doi.org/10.1016/j.arthro.2018.11.064.

    Article  PubMed  Google Scholar 

  59. • Nielsen ES, McCauley JC, Pulido PA, Bugbee WD. Return to sport and recreational activity after osteochondral allograft transplantation in the knee. Am J Sports Med. 2017;45(7):1608–14. https://doi.org/10.1177/0363546517694857. Large case series reporting on rate of return to sport following osteochondral allograft transplantation. The study involved highly active individuals and provides valuable details on the mechanism of action, causes for not returning to sports, and the types of sports the athletes engaged in.

    Article  PubMed  Google Scholar 

  60. Marom N, Wang D, Patel S, Williams RJ 3rd. Return to play after bipolar patellofemoral osteochondral allograft transplantation for a professional basketball player: a case report. JBJS Case Connect. 2019;9(3):e0291. https://doi.org/10.2106/JBJS.CC.18.00291.

    Article  PubMed  Google Scholar 

  61. Patel S, Amirhekmat A, Le R, Williams Iii RJ, Wang D. Osteochondral allograft transplantation in professional athletes: rehabilitation and return to play. Int J Sports Phys Ther. 2021;16(3):941–58. https://doi.org/10.26603/001c.22085.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Balazs GC, Wang D, Burge AJ, Sinatro AL, Wong AC, Williams RJ. Return to play among elite basketball players after osteochondral allograft transplantation of full-thickness cartilage lesions. Orthop J Sports Med. 2018;6(7):2325967118786941.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S, et al. Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med. 2011;39(12):2549–57. https://doi.org/10.1177/0363546511420688.

    Article  PubMed  Google Scholar 

  64. Chui K, Jeys L, Snow M. Knee salvage procedures: the indications, techniques and outcomes of large osteochondral allografts. World J Orthop. 2015;6(3):340–50. https://doi.org/10.5312/wjo.v6.i3.340.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo Triana.

Ethics declarations

Conflict of Interest

Jairo Triana, Zachary I. Li, Naina Rao, and Matthew T. Kingery declare that they have no conflict of interest relevant to this article. Eric J. Strauss is a paid consultant to Subchondral Solutions and Vericel, and receives support from Cartiheal and Springer Publishing Company.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triana, J., Li, Z.I., Rao, N. et al. Return to Play After Knee Articular Cartilage Restoration: Surgical Options, Rehabilitation Protocols, and Performance Outcomes. Curr Rev Musculoskelet Med 16, 575–586 (2023). https://doi.org/10.1007/s12178-023-09872-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-023-09872-w

Keywords

Navigation