Skip to main content
Log in

Current Concepts in the Measurement of Glenohumeral Bone Loss

  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose

The extent of glenohumeral bone loss seen in anterior shoulder dislocations plays a major role in guiding surgical management of these patients. The need for accurate and reliable preoperative assessment of bone loss on imaging studies is therefore of paramount importance to orthopedic surgeons. This article will focus on the tools that are available to clinicians for quantifying glenoid bone loss with a focus on emerging trends and research in order to describe current practices.

Recent findings

Recent evidence supports the use of 3D CT as the most optimal method for quantifying bone loss on the glenoid and humerus. New trends in the use of 3D and ZTE MRI represent exciting alternatives to CT imaging, although they are not widely used and require further investigation. Contemporary thinking surrounding the glenoid track concept and the symbiotic relationship between glenoid and humeral bone loss on shoulder stability has transformed our understanding of these lesions and has inspired a new focus of study for radiologists and orthopedist alike.

Summary

Although a number of different advanced imaging modalities are utilized to detect and quantify glenohumeral bone loss in practice, the current literature supports 3D CT imaging to provide the most reliable and accurate assessments. The emergence of the glenoid track concept for glenoid and humeral head bone loss has inspired a new area of study for researchers that presents exciting opportunities for the development of a deeper understanding of glenohumeral instability in the future. Ultimately, however, the heterogeneity of literature, which speaks to the diverse practices that exist across the world, limits any firm conclusions from being drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Apostolakos JM, Wright-Chisem J, Gulotta LV, Taylor SA, Dines JS. Anterior glenohumeral instability: current review with technical pearls and pitfalls of arthroscopic soft-tissue stabilization. World J Orthop. 2021;12(1):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arner JW, Peebles LA, Bradley JP, Provencher MT. Anterior shoulder instability management: indications, techniques, and outcomes. Arthroscopy. 2020;36(11):2791–3.

    Article  PubMed  Google Scholar 

  3. Bernageau J, Patte D, Debeyre J, Ferrane J. Value of the glenoid profil in recurrent luxations of the shoulder. Rev Chir Orthop Reparatrice Appar Mot. 1976;62(2 suppl):142–7.

    CAS  PubMed  Google Scholar 

  4. Edwards TB, Boulahia A, Walch G. Radiographic analysis of bone defects in chronic anterior shoulder instability. Arthroscopy. 2003;19(7):732–9.

    Article  PubMed  Google Scholar 

  5. Itoi E, Lee SB, Amrami KK, Wenger DE, An KN. Quantitative assessment of classic anteroinferior bony Bankart lesions by radiography and computed tomography. Am J Sports Med. 2003;31(1):112–8.

    Article  PubMed  Google Scholar 

  6. Murachovsky J, Bueno RS, Nascimento LG, Almeida LH, Strose E, Castiglia MT, et al. Calculating anterior glenoid bone loss using the Bernageau profile view. Skeletal Radiol. 2012;41(10):1231–7.

    Article  PubMed  Google Scholar 

  7. Pansard E, Klouche S, Billot N, Rousselin B, Kraus TM, Bauer T, et al. Reliability and validity assessment of a glenoid bone loss measurement using the Bernageau profile view in chronic anterior shoulder instability. J Shoulder Elbow Surg. 2013;22(9):1193–8.

    Article  PubMed  Google Scholar 

  8. Ikemoto RY, Nascimento LG, Bueno RS, Strose E, Almeida LH, Murachovsky J. Anterior glenoid rim erosion measured by X-ray exam: a simple way to perform the Bernageau profile view. Rev Bras Ortop. 2010;45(6):538–42.

    Article  PubMed  Google Scholar 

  9. Sommaire C, Penz C, Clavert P, Klouche S, Hardy P, Kempf JF. Recurrence after arthroscopic Bankart repair: is quantitative radiological analysis of bone loss of any predictive value? Orthop Traumatol Surg Res. 2012;98(5):514–9.

    Article  CAS  PubMed  Google Scholar 

  10. • Sgroi M, Huzurudin H, Ludwig M, Zippelius T, Reichel H, Kappe T. MRI allows accurate measurement of glenoid bone loss. Clin Orthop Relat Res. 2022;480(9):1731–42. (Study demonstrating similar results using MRI when compared to CT for quantification of glenoid bone loss.)

    Article  PubMed  Google Scholar 

  11. Walter WR, Samim M, LaPolla FWZ, Gyftopoulos S. Imaging quantification of glenoid bone loss in patients with glenohumeral instability: a systematic review. AJR Am J Roentgenol. 2019;212(5):1096–105.

    Article  PubMed  Google Scholar 

  12. Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs: significance of the inverted-pear glenoid and the humeral engaging Hill-Sachs lesion. Arthroscopy. 2000;16(7):677–94.

    Article  CAS  PubMed  Google Scholar 

  13. Burkhart SS, Debeer JF, Tehrany AM, Parten PM. Quantifying glenoid bone loss arthroscopically in shoulder instability. Arthroscopy. 2002;18(5):488–91.

    Article  PubMed  Google Scholar 

  14. Kralinger F, Aigner F, Longato S, Rieger M, Wambacher M. Is the bare spot a consistent landmark for shoulder arthroscopy? A study of 20 embalmed glenoids with 3-dimensional computed tomographic reconstruction. Arthroscopy. 2006;22(4):428–32.

    Article  PubMed  Google Scholar 

  15. Saintmard B, Lecouvet F, Rubini A, Dubuc JE. Is the bare spot a valid landmark for glenoid evaluation in arthroscopic Bankart surgery? Acta Orthop Belg. 2009;75(6):736–42.

    PubMed  Google Scholar 

  16. Barcia AM, Rowles DJ, Bottoni CR, Dekker TJ, Tokish JM. Glenoid bare area: arthroscopic characterization and its implications on measurement of bone loss. Arthroscopy. 2013;29(10):1671–5.

    Article  PubMed  Google Scholar 

  17. Miyatake K, Takeda Y, Fujii K, Takasago T, Iwame T. Validity of arthroscopic measurement of glenoid bone loss using the bare spot. Open Access J Sports Med. 2014;5:37–42.

    PubMed  PubMed Central  Google Scholar 

  18. Bakshi NK, Patel I, Jacobson JA, Debski RE, Sekiya JK. Comparison of 3-dimensional computed tomography-based measurement of glenoid bone loss with arthroscopic defect size estimation in patients with anterior shoulder instability. Arthroscopy. 2015;31(10):1880–5.

    Article  PubMed  Google Scholar 

  19. Griffith JF, Yung PS, Antonio GE, Tsang PH, Ahuja AT, Chan KM. CT compared with arthroscopy in quantifying glenoid bone loss. AJR Am J Roentgenol. 2007;189(6):1490–3.

    Article  PubMed  Google Scholar 

  20. Lee RK, Griffith JF, Tong MM, Sharma N, Yung P. Glenoid bone loss: assessment with MR imaging. Radiology. 2013;267(2):496–502.

    Article  PubMed  Google Scholar 

  21. Gyftopoulos S, Beltran LS, Yemin A, Strauss E, Meislin R, Jazrawi L, et al. Use of 3D MR reconstructions in the evaluation of glenoid bone loss: a clinical study. Skeletal Radiol. 2014;43(2):213–8.

    Article  PubMed  Google Scholar 

  22. e Souza PM, Brandao BL, Brown E, Motta G, Monteiro M, Marchiori E. Recurrent anterior glenohumeral instability: the quantification of glenoid bone loss using magnetic resonance imaging. Skeletal Radiol. 2014;43(8):1085–92.

    Article  PubMed  Google Scholar 

  23. Altan E, Ozbaydar MU, Tonbul M, Yalcin L. Comparison of two different measurement methods to determine glenoid bone defects: area or width? J Shoulder Elbow Surg. 2014;23(8):1215–22.

    Article  PubMed  Google Scholar 

  24. Barchilon VS, Kotz E, Barchilon Ben-Av M, Glazer E, Nyska M. A simple method for quantitative evaluation of the missing area of the anterior glenoid in anterior instability of the glenohumeral joint. Skeletal Radiol. 2008;37(8):731–6.

    Article  PubMed  Google Scholar 

  25. Dumont GD, Russell RD, Browne MG, Robertson WJ. Area-based determination of bone loss using the glenoid arc angle. Arthroscopy. 2012;28(7):1030–5.

    Article  PubMed  Google Scholar 

  26. Shaha JS, Cook JB, Song DJ, Rowles DJ, Bottoni CR, Shaha SH, et al. Redefining “critical” bone loss in shoulder instability: functional outcomes worsen with “Subcritical” bone loss. Am J Sports Med. 2015;43(7):1719–25.

    Article  PubMed  Google Scholar 

  27. Sugaya H, Moriishi J, Dohi M, Kon Y, Tsuchiya A. Glenoid rim morphology in recurrent anterior glenohumeral instability. J Bone Joint Surg Am. 2003;85(5):878–84.

    Article  PubMed  Google Scholar 

  28. Giles JW, Owens BD, Athwal GS. Estimating glenoid width for instability-related bone loss: a CT evaluation of an MRI formula. Am J Sports Med. 2015;43(7):1726–30.

    Article  PubMed  Google Scholar 

  29. Owens BD, Burns TC, Campbell SE, Svoboda SJ, Cameron KL. Simple method of glenoid bone loss calculation using ipsilateral magnetic resonance imaging. Am J Sports Med. 2013;41(3):622–4.

    Article  PubMed  Google Scholar 

  30. Griffith JF, Antonio GE, Tong CW, Ming CK. Anterior shoulder dislocation: quantification of glenoid bone loss with CT. AJR Am J Roentgenol. 2003;180(5):1423–30.

    Article  PubMed  Google Scholar 

  31. Provencher MT, Bhatia S, Ghodadra NS, Grumet RC, Bach BR Jr, Dewing CB, et al. Recurrent shoulder instability: current concepts for evaluation and management of glenoid bone loss. J Bone Joint Surg Am. 2010;92(Suppl 2):133–51.

    Article  PubMed  Google Scholar 

  32. Verweij LPE, Schuit AA, Kerkhoffs G, Blankevoort L, van den Bekerom MPJ, van Deurzen DFP. Accuracy of currently available methods in quantifying anterior glenoid bone loss: controversy regarding gold standard-a systematic review. Arthroscopy. 2020;36(8):2295-313 e1.

    Article  PubMed  Google Scholar 

  33. Gerber C, Nyffeler RW. Classification of glenohumeral joint instability. Clin Orthop Relat Res. 2002;400:65–76.

    Article  Google Scholar 

  34. Huysmans PE, Haen PS, Kidd M, Dhert WJ, Willems JW. The shape of the inferior part of the glenoid: a cadaveric study. J Shoulder Elbow Surg. 2006;15(6):759–63.

    Article  PubMed  Google Scholar 

  35. Moroder P, Resch H, Schnaitmann S, Hoffelner T, Tauber M. The importance of CT for the pre-operative surgical planning in recurrent anterior shoulder instability. Arch Orthop Trauma Surg. 2013;133(2):219–26.

    Article  PubMed  Google Scholar 

  36. Chuang TY, Adams CR, Burkhart SS. Use of preoperative three-dimensional computed tomography to quantify glenoid bone loss in shoulder instability. Arthroscopy. 2008;24(4):376–82.

    Article  PubMed  Google Scholar 

  37. Bakshi NK, Cibulas GA, Sekiya JK, Bedi A. A clinical comparison of linear- and surface area-based methods of measuring glenoid bone loss. Am J Sports Med. 2018;46(10):2472–7.

    Article  PubMed  Google Scholar 

  38. Baudi P, Righi P, Bolognesi D, Rivetta S, Rossi Urtoler E, Guicciardi N, et al. How to identify and calculate glenoid bone deficit. Chir Organi Mov. 2005;90(2):145–52.

    CAS  PubMed  Google Scholar 

  39. Walter WR, Samim M, LaPolla FWZ, Gyftopoulos S. Imaging quantification of glenoid bone loss in patients with glenohumeral instability: a systematic review. AJR Am J Roentgenol. 2019;212(5):1096–105.

  40. Baudi P, Campochiaro G, Rebuzzi M, Matino G, Catani F. Assessment of bone defects in anterior shoulder instability. Joints. 2013;1(1):40–8.

    PubMed  PubMed Central  Google Scholar 

  41. Milano G, Saccomanno MF, Magarelli N, Bonomo L. Analysis of agreement between computed tomography measurements of glenoid bone defects in anterior shoulder instability with and without comparison with the contralateral shoulder. Am J Sports Med. 2015;43(12):2918–26.

    Article  PubMed  Google Scholar 

  42. Rouleau DM, Garant-Saine L, Canet F, Sandman E, Menard J, Clement J. Measurement of combined glenoid and Hill-Sachs lesions in anterior shoulder instability. Shoulder Elbow. 2017;9(3):160–8.

    Article  PubMed  Google Scholar 

  43. Bishop JY, Jones GL, Rerko MA, Donaldson C, Group MS. 3-D CT is the most reliable imaging modality when quantifying glenoid bone loss. Clin Orthop Relat Res. 2013;471(4):1251–6.

    Article  PubMed  Google Scholar 

  44. • Min KS, Sy JW, Mannino BJ. Area measurement percentile of 3-dimensional computed tomography has the highest interobserver reliability when measuring anterior glenoid bone loss. Arthroscopy. 2023;39(6):1394–402. (Recent study demonstrating highest interobserver reliabilty when radiologists use 3D CT and area-based methods to measure glenoid bone loss.)

  45. Rerko MA, Pan X, Donaldson C, Jones GL, Bishop JY. Comparison of various imaging techniques to quantify glenoid bone loss in shoulder instability. J Shoulder Elbow Surg. 2013;22(4):528–34.

    Article  PubMed  Google Scholar 

  46. Bois AJ, Fening SD, Polster J, Jones MH, Miniaci A. Quantifying glenoid bone loss in anterior shoulder instability: reliability and accuracy of 2-dimensional and 3-dimensional computed tomography measurement techniques. Am J Sports Med. 2012;40(11):2569–77.

    Article  PubMed  Google Scholar 

  47. Arenas-Miquelez A, Dabirrahmani D, Sharma G, Graham PL, Appleyard R, Bokor DJ, et al. What is the most reliable method of measuring glenoid bone loss in anterior glenohumeral instability? A cadaveric study comparing different measurement techniques for glenoid bone loss. Am J Sports Med. 2021;49(13):3628–37.

    Article  PubMed  Google Scholar 

  48. Saliken DJ, Bornes TD, Bouliane MJ, Sheps DM, Beaupre LA. Imaging methods for quantifying glenoid and Hill-Sachs bone loss in traumatic instability of the shoulder: a scoping review. BMC Musculoskelet Disord. 2015;16:164.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sugaya H, Moriishi J, Kanisawa I, Tsuchiya A. Arthroscopic osseous Bankart repair for chronic recurrent traumatic anterior glenohumeral instability. J Bone Joint Surg Am. 2005;87(8):1752–60.

    PubMed  Google Scholar 

  50. Griffith JF, Antonio GE, Yung PS, Wong EM, Yu AB, Ahuja AT, et al. Prevalence, pattern, and spectrum of glenoid bone loss in anterior shoulder dislocation: CT analysis of 218 patients. AJR Am J Roentgenol. 2008;190(5):1247–54.

    Article  PubMed  Google Scholar 

  51. Nofsinger C, Browning B, Burkhart SS, Pedowitz RA. Objective preoperative measurement of anterior glenoid bone loss: a pilot study of a computer-based method using unilateral 3-dimensional computed tomography. Arthroscopy. 2011;27(3):322–9.

    Article  PubMed  Google Scholar 

  52. De Filippo M, Castagna A, Steinbach LS, Silva M, Concari G, Pedrazzi G, et al. Reproducible noninvasive method for evaluation of glenoid bone loss by multiplanar reconstruction curved computed tomographic imaging using a cadaveric model. Arthroscopy. 2013;29(3):471–7.

    Article  PubMed  Google Scholar 

  53. Huijsmans PE, Haen PS, Kidd M, Dhert WJ, van der Hulst VP, Willems WJ. Quantification of a glenoid defect with three-dimensional computed tomography and magnetic resonance imaging: a cadaveric study. J Shoulder Elbow Surg. 2007;16(6):803–9.

    Article  PubMed  Google Scholar 

  54. Kwon YW, Powell KA, Yum JK, Brems JJ, Iannotti JP. Use of three-dimensional computed tomography for the analysis of the glenoid anatomy. J Shoulder Elbow Surg. 2005;14(1):85–90.

    Article  PubMed  Google Scholar 

  55. Magarelli N, Milano G, Baudi P, Santagada DA, Righi P, Spina V, et al. Comparison between 2D and 3D computed tomography evaluation of glenoid bone defect in unilateral anterior gleno-humeral instability. Radiol Med. 2012;117(1):102–11.

    Article  CAS  PubMed  Google Scholar 

  56. • Makhni EC, Tramer JS, Anderson MJJ, Levine WN. Evaluating bone loss in anterior shoulder instability. J Am Acad Orthop Surg. 2022;30(12):563–72. (Excellent review article describing bone loss in anterior shoulder instability.)

    Article  PubMed  Google Scholar 

  57. Sharifi A, Siebert MJ, Chhabra A. How to measure glenoid bone stock and version and why it is important: a practical guide. Radiographics. 2020;40(6):1671–83.

    Article  PubMed  Google Scholar 

  58. Lacheta L, Herbst E, Voss A, Braun S, Jungmann P, Millett PJ, et al. Insufficient consensus regarding circle size and bone loss width using the ratio-"best fit circle"-method even with three-dimensional computed tomography. Knee Surg Sports Traumatol Arthrosc. 2019;27(10):3222–9.

    Article  PubMed  Google Scholar 

  59. • Kubicka AM, Stefaniak J, Lubiatowski P, Dlugosz J, Dzianach M, Redman M, et al. Reliability of measurements performed on two dimensional and three dimensional computed tomography in glenoid assessment for instability. Int Orthop. 2016;40(12):2581–8. (This study illustrates improved measurement accuracy and reliability with 3D versus 2D CT.)

    Article  PubMed  Google Scholar 

  60. Budge MD, Lewis GS, Schaefer E, Coquia S, Flemming DJ, Armstrong AD. Comparison of standard two-dimensional and three-dimensional corrected glenoid version measurements. J Shoulder Elbow Surg. 2011;20(4):577–83.

    Article  PubMed  Google Scholar 

  61. Stecco A, Guenzi E, Cascone T, Fabbiano F, Fornara P, Oronzo P, et al. MRI can assess glenoid bone loss after shoulder luxation: inter- and intra-individual comparison with CT. Radiol Med. 2013;118(8):1335–43.

    Article  PubMed  Google Scholar 

  62. Friedman LG, Ulloa SA, Braun DT, Saad HA, Jones MH, Miniaci AA. Glenoid bone loss measurement in recurrent shoulder dislocation: assessment of measurement agreement between CT and MRI. Orthop J Sports Med. 2014;2(9):2325967114549541.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gyftopoulos S, Hasan S, Bencardino J, Mayo J, Nayyar S, Babb J, et al. Diagnostic accuracy of MRI in the measurement of glenoid bone loss. AJR Am J Roentgenol. 2012;199(4):873–8.

    Article  PubMed  Google Scholar 

  64. Weber AE, Bolia IK, Horn A, Villacis D, Omid R, Tibone JE, et al. Glenoid bone loss in shoulder instability: superiority of three-dimensional computed tomography over two-dimensional magnetic resonance imaging using established methodology. Clin Orthop Surg. 2021;13(2):223–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sugaya H. Techniques to evaluate glenoid bone loss. Curr Rev Musculoskelet Med. 2014;7(1):1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Olmscheid N, Crawford SD, Dickinson C, Fajardo RS, Knake JJ, Wilcox CL, et al. Novel anterior coracoglenoid line utilizing magnetic resonance imaging (MRI) corresponds with critical glenoid bone loss. Skeletal Radiol. 2022;51(7):1433–8.

    Article  PubMed  Google Scholar 

  67. Vopat BG, Cai W, Torriani M, Vopat ML, Hemma M, Harris GJ, et al. Measurement of glenoid bone loss with 3-dimensional magnetic resonance imaging: a matched computed tomography analysis. Arthroscopy. 2018;34(12):3141–7.

    Article  PubMed  Google Scholar 

  68. Stillwater L, Koenig J, Maycher B, Davidson M. 3D-MR vs. 3D-CT of the shoulder in patients with glenohumeral instability. Skeletal Radiol. 2017;46(3):325–31.

    Article  PubMed  Google Scholar 

  69. Lander ST, Liles JL, Kim BI, Taylor DC, Lau BC. Comparison of computed tomography and 3D magnetic resonance imaging in evaluating glenohumeral instability bone loss. J Shoulder Elbow Surg. 2022;31(11):2217–24.

    Article  PubMed  Google Scholar 

  70. Lansdown DA, Cvetanovich GL, Verma NN, Cole BJ, Bach BR, Nicholson G, et al. Automated 3-dimensional magnetic resonance imaging allows for accurate evaluation of glenoid bone loss compared with 3-dimensional computed tomography. Arthroscopy. 2019;35(3):734–40.

    Article  PubMed  Google Scholar 

  71. Lansdown DA, Pedoia V. Editorial commentary: Can we evaluate glenoid bone with magnetic resonance imaging? Yes, if you have the right sequence. Arthroscopy. 2020;36(9):2401–2.

    Article  PubMed  Google Scholar 

  72. Ma YJ, West J, Nazaran A, Cheng X, Hoenecke H, Du J, et al. Feasibility of using an inversion-recovery ultrashort echo time (UTE) sequence for quantification of glenoid bone loss. Skeletal Radiol. 2018;47(7):973–80.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tian CY, Shang Y, Zheng ZZ. Glenoid bone lesions: comparison between 3D VIBE images in MR arthrography and nonarthrographic MSCT. J Magn Reson Imaging. 2012;36(1):231–6.

    Article  PubMed  Google Scholar 

  74. • Yanke AB, Shin JJ, Pearson I, Bach BR Jr, Romeo AA, Cole BJ, et al. Three-dimensional magnetic resonance imaging quantification of glenoid bone loss is equivalent to 3-dimensional computed tomography quantification: cadaveric study. Arthroscopy. 2017;33(4):709–15. (Important study demonstrating similar efficacy of 3D MRI to 3D CT.)

    Article  PubMed  Google Scholar 

  75. Aydingoz U, Yildiz AE, Ergen FB. Zero echo time musculoskeletal MRI: technique, optimization, applications, and pitfalls. Radiographics. 2022;42(5):1398–414.

    Article  PubMed  Google Scholar 

  76. Breighner RE, Bogner EA, Lee SC, Koff MF, Potter HG. Evaluation of osseous morphology of the hip using zero echo time magnetic resonance imaging. Am J Sports Med. 2019;47(14):3460–8.

    Article  PubMed  Google Scholar 

  77. Cho SB, Baek HJ, Ryu KH, Choi BH, Moon JI, Kim TB, et al. Clinical feasibility of zero TE skull MRI in patients with head trauma in comparison with CT: a single-center study. AJNR Am J Neuroradiol. 2019;40(1):109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. •• Breighner RE, Endo Y, Konin GP, Gulotta LV, Koff MF, Potter HG. Technical developments: zero echo time imaging of the shoulder: enhanced osseous detail by using MR imaging. Radiology. 2018;286(3):960–6. (First study demonstrating the efficacy of ZTE MRI to measure bone loss in the shoulder.)

    Article  PubMed  Google Scholar 

  79. de Mello RAF, Ma YJ, Ashir A, Jerban S, Hoenecke H, Carl M, et al. Three-dimensional zero echo time magnetic resonance imaging versus 3-dimensional computed tomography for glenoid bone assessment. Arthroscopy. 2020;36(9):2391–400.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fox JA, Sanchez A, Zajac TJ, Provencher MT. Understanding the Hill-Sachs lesion in its role in patients with recurrent anterior shoulder instability. Curr Rev Musculoskelet Med. 2017;10(4):469–79.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rowe CR, Zarins B, Ciullo JV. Recurrent anterior dislocation of the shoulder after surgical repair. Apparent causes of failure and treatment. J Bone Joint Surg Am. 1984;66(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  82. Welsh MF, Willing RT, Giles JW, Athwal GS, Johnson JA. A rigid body model for the assessment of glenohumeral joint mechanics: influence of osseous defects on range of motion and dislocation. J Biomech. 2016;49(4):514–9.

    Article  PubMed  Google Scholar 

  83. Yiannakopoulos CK, Mataragas E, Antonogiannakis E. A comparison of the spectrum of intra-articular lesions in acute and chronic anterior shoulder instability. Arthroscopy. 2007;23(9):985–90.

    Article  PubMed  Google Scholar 

  84. Charousset C, Beauthier V, Bellaiche L, Guillin R, Brassart N, Thomazeau H, et al. Can we improve radiological analysis of osseous lesions in chronic anterior shoulder instability? Orthop Traumatol Surg Res. 2010;96(8 Suppl):S88-93.

    Article  CAS  PubMed  Google Scholar 

  85. Cho SH, Cho NS, Rhee YG. Preoperative analysis of the Hill-Sachs lesion in anterior shoulder instability: how to predict engagement of the lesion. Am J Sports Med. 2011;39(11):2389–95.

    Article  PubMed  Google Scholar 

  86. Ho A, Kurdziel MD, Koueiter DM, Wiater JM. Three-dimensional computed tomography measurement accuracy of varying Hill-Sachs lesion size. J Shoulder Elbow Surg. 2018;27(2):350–6.

    Article  PubMed  Google Scholar 

  87. Ozaki R, Nakagawa S, Mizuno N, Mae T, Yoneda M. Hill-sachs lesions in shoulders with traumatic anterior instability: evaluation using computed tomography with 3-dimensional reconstruction. Am J Sports Med. 2014;42(11):2597–605.

    Article  PubMed  Google Scholar 

  88. Burns DM, Chahal J, Shahrokhi S, Henry P, Wasserstein D, Whyne C, et al. Diagnosis of engaging bipolar bone defects in the shoulder using 2-dimensional computed tomography: a cadaveric study. Am J Sports Med. 2016;44(11):2771–7.

    Article  PubMed  Google Scholar 

  89. Schneider AK, Hoy GA, Ek ET, Rotstein AH, Tate J, Taylor DM, et al. Interobserver and intraobserver variability of glenoid track measurements. J Shoulder Elbow Surg. 2017;26(4):573–9.

    Article  PubMed  Google Scholar 

  90. Kodali P, Jones MH, Polster J, Miniaci A, Fening SD. Accuracy of measurement of Hill-Sachs lesions with computed tomography. J Shoulder Elbow Surg. 2011;20(8):1328–34.

    Article  PubMed  Google Scholar 

  91. Gyftopoulos S, Yemin A, Beltran L, Babb J, Bencardino J. Engaging Hill-Sachs lesion: is there an association between this lesion and findings on MRI? AJR Am J Roentgenol. 2013;201(4):W633–8.

    Article  PubMed  Google Scholar 

  92. Ladd LM, Crews M, Maertz NA. Glenohumeral joint instability: a review of anatomy, xlinical presentation, and imaging. Clin Sports Med. 2021;40(4):585–99.

    Article  PubMed  Google Scholar 

  93. Balg F, Boileau P. The instability severity index score. A simple pre-operative score to select patients for arthroscopic or open shoulder stabilisation. J Bone Joint Surg Br. 2007;89(11):1470–7.

    Article  CAS  PubMed  Google Scholar 

  94. •• Di Giacomo G, Itoi E, Burkhart SS. Evolving concept of bipolar bone loss and the Hill-Sachs lesion: from “engaging/non-engaging” lesion to “on-track/off-track” lesion. Arthroscopy. 2014;30(1):90–8. (Study establishing concept of on-track and off-track for Hill-Sachs lesions.)

    Article  PubMed  Google Scholar 

  95. Lynch JR, Clinton JM, Dewing CB, Warme WJ, Matsen FA 3rd. Treatment of osseous defects associated with anterior shoulder instability. J Shoulder Elbow Surg. 2009;18(2):317–28.

    Article  PubMed  Google Scholar 

  96. Yamamoto N, Itoi E. Osseous defects seen in patients with anterior shoulder instability. Clin Orthop Surg. 2015;7(4):425–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Omori Y, Yamamoto N, Koishi H, Futai K, Goto A, Sugamoto K, et al. Measurement of the glenoid track in vivo as investigated by 3-dimensional motion analysis using open MRI. Am J Sports Med. 2014;42(6):1290–5.

    Article  PubMed  Google Scholar 

  98. Yamamoto N, Itoi E, Abe H, Minagawa H, Seki N, Shimada Y, et al. Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: a new concept of glenoid track. J Shoulder Elbow Surg. 2007;16(5):649–56.

    Article  PubMed  Google Scholar 

  99. Bracamontes-Martinez CN, Juarez-Jimenez HG, Rojas-Larios F, Sanchez-Rojas P, Calderon-Franco JA, Chavez-Garcia CR. Glenoid track “off-track” as a risk factor for recurrence of anterior glenohumeral instability in postoperative patients. Acta Ortop Mex. 2020;34(6):365–70.

    CAS  PubMed  Google Scholar 

  100. Locher J, Wilken F, Beitzel K, Buchmann S, Longo UG, Denaro V, et al. Hill-Sachs off-track lesions as risk factor for recurrence of instability after arthroscopic bankart repair. Arthroscopy. 2016;32(10):1993–9.

    Article  PubMed  Google Scholar 

  101. Shaha JS, Cook JB, Rowles DJ, Bottoni CR, Shaha SH, Tokish JM. Clinical validation of the glenoid track concept in anterior glenohumeral instability. J Bone Joint Surg Am. 2016;98(22):1918–23.

    Article  PubMed  Google Scholar 

  102. Itoi E. ‘On-track’ and ‘off-track’ shoulder lesions. EFORT Open Rev. 2017;2(8):343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Clement J, Menard J, Raison M, Dumais J, Dubois L, Rouleau DM. Three-dimensional analysis of the locked position in patients with recurrent shoulder instability. J Shoulder Elbow Surg. 2017;26(3):536–43.

    Article  PubMed  Google Scholar 

  104. Gyftopoulos S, Beltran LS, Bookman J, Rokito A. MRI evaluation of bipolar bone loss using the on-track off-track method: a feasibility study. AJR Am J Roentgenol. 2015;205(4):848–52.

    Article  PubMed  Google Scholar 

  105. Mulleneers LIC, Van Rompaey H, Haloui B, Pouliart N. Determining on-/off-track lesions in glenohumeral dislocation using multiplanar reconstruction computed tomography is easier and more reproducible than using 3-dimensional computed tomography. Am J Sports Med. 2021;49(1):137–45.

    Article  PubMed  Google Scholar 

  106. Jeske HC, Oberthaler M, Klingensmith M, Dallapozza C, Smekal V, Wambacher M, et al. Normal glenoid rim anatomy and the reliability of shoulder instability measurements based on intrasite correlation. Surg Radiol Anat. 2009;31(8):623–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan R. Thacher.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thacher, R.R., Retzky, J.S., Dekhne, M.S. et al. Current Concepts in the Measurement of Glenohumeral Bone Loss. Curr Rev Musculoskelet Med 16, 419–431 (2023). https://doi.org/10.1007/s12178-023-09852-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-023-09852-0

Keywords

Navigation