Skip to main content
Log in

Risk Assessment and Management of Outflow Tract Arrhythmias Refractory to Prior Treatments

  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The ventricular outflow tracts (OT) are a frequent site of origin of idiopathic premature ventricular complexes (PVC) and ventricular tachycardias (VT). Despite relatively high success rates, catheter ablation (CA) may fail to achieve long-term clinical success in some patients. In this article, we briefly review how to approach risk stratification in patients with OT PVC/VT and the methods to improve outcomes in cases that are refractory to standard ablation approaches.

Recent Findings

Risk stratification should consider the potential for malignant arrhythmic events and the occurrence of arrhythmia-induced cardiomyopathy. When standard ablation fails, advanced ablation techniques can be used to treat OT arrhythmias.

Summary

Indirect risk stratification methods can be used in patients with refractory OT PVC/VT. Novel ablation therapies, such as alcohol ablation, dispersive patch repositioning or bipolar ablation, can improve OT PVC/VT ablation outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d’Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL Jr, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias: executive summary. Heart Rhythm. 2020;17(1):e155–205.

    Article  Google Scholar 

  2. •• Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, Eckardt L, Friede T, Haugaa KH, Hocini M, Lambiase PD, Marijon E, Merino JL, Peichl P, Priori SG, Reichlin T, Schulz-Menger J, Sticherling C, Tzeis S, Verstrael A, Volterrani M; ESC Scientific Document Group. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022:ehac262. The recent guidelines provide essential source of information for management of ventricular tachyarrhythmias, including risk stratification methods as well as rationale and goals for genetic testing in selected populations.

  3. Chung FP, Lin YJ, Chang SL, Lo LW, Hu YF, Chen YY, Chiou CW, Chen SA. Long-term follow-up of catheter ablation of ventricular arrhythmias: experiences from a tertiary referral center in Taiwan. Acta Cardiol Sin. 2015;31(1):8–17.

    Google Scholar 

  4. • Chung FP, Lin CY, Shirai Y, Futyma P, Santangeli P, Lin YJ, Chang SL, Lo LW, Hu YF, Chang HY, Marchlinski FE, Chen SA. Outcomes of catheter ablation of ventricular arrhythmia originating from the left ventricular summit: a multicenter study. Heart Rhythm. 2020;17(7):1077–83. Chung FP et al. demonstrate that the effectiveness of catheter ablation of the LV summit arrhythmias is associated with lower long term success if multisite ablation is required.

    Article  Google Scholar 

  5. Huizar JF, Ellenbogen KA, Tan AY, Kaszala K. Arrhythmia-induced cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73:2328–44.

    Article  Google Scholar 

  6. Sabbag A, Essayagh B, Barrera JDR, Basso C, Berni A, Cosyns B, Deharo JC, Deneke T, Di Biase L, Enriquez-Sarano M, Donal E, Imai K, Lim HS, Marsan NA, Turagam MK, Peichl P, Po SS, Haugaa KH, Shah D, de Riva Silva M, Bertrand P, Saba M, Dweck M, Townsend SN, Ngarmukos T, Fenelon G, Santangeli P, Sade LE, Corrado D, Lambiase P, Sanders P, Delacrétaz E, Jahangir A, Kaufman ES, Saggu DK, Pierard L, Delgado V, Lancellotti P. EHRA expert consensus statement on arrhythmic mitral valve prolapse and mitral annular disjunction complex in collaboration with the ESC Council on valvular heart disease and the European Association of Cardiovascular Imaging endorsed by the Heart Rhythm Society, by the Asia Pacific Heart Rhythm Society, and by the Latin American Heart Rhythm Society. Europace. 2022:euac125. This consensus statement reviews and summarizes current literature regarding the arrhythmic mitral valve prolapse based on an international multidisciplinary collaboration between experts in clinical cardiology, echocardiography, CMR, cardiac CT, electrophysiology and cardiothoracic surgery. It summarizes the main gaps of knowledge regarding identification, risk stratification and management of arrhythmic mitral valve prolapse and provides practical suggestions for diagnosis and management.

  7. Marano PJ, Lim LJ, Sanchez JM, Alvi R, Nah G, Badhwar N, et al. Long-term outcomes of ablation for ventricular arrhythmias in mitral valve prolapse. J Interv Card Electrophysiol. 2021;61:145–54.

    Article  Google Scholar 

  8. Noseworthy PA, Asirvatham SJ. The knot that binds mitral valve prolapse and sudden cardiac death. Circulation. 2015;132:551–2.

    Article  Google Scholar 

  9. Syed FF, Ackerman MJ, McLeod CJ, Kapa S, Mulpuru SK, Sriram CS, Cannon BC, Asirvatham SJ, Noseworthy PA. Sites of successful ventricular fibrillation ablation in bileaflet mitral valve prolapse syndrome. Circ Arrhythm Electrophysiol. 2016;9(5):e004005.

  10. Muser D, Santangeli P, Castro SA, et al. Risk stratification of patients with apparently idiopathic premature ventricular contractions: a multicenter international CMR registry. JACC Clin Electrophysiol. 2020;6(6):722–35. This study investigated the prevalence and prognostic significance of concealed myocardial abnormalities identified by cardiac magnetic resonance (CMR) imaging in patients with apparently idiopathic premature ventricular contractions and showed that CMR can identify concealed myocardial abnormalities in patients with apparently idiopathic frequent PVCs. Such CMR findings predict worse clinical outcomes.

    Article  Google Scholar 

  11. Scott PA, Rosengarten JA, Curzen NP, Morgan JM. Late gadolinium enhancement cardiac magnetic resonance imaging for the prediction of ventricular tachyarrhythmic events: a meta-analysis. Eur J Heart Fail. 2013;15:1019–27.

    Article  CAS  Google Scholar 

  12. Kuruvilla S, Adenaw N, Katwal AB, Lipinski MJ, Kramer CM, Salerno M. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2014;7:250–8.

    Article  Google Scholar 

  13. Di Marco A, Anguera I, Schmitt M, et al. Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail. 2017;5:28–38.

    Article  Google Scholar 

  14. Ganesan AN, Gunton J, Nucifora G, McGavigan AD, Selvanayagam JB. Impact of late gadolinium enhancement on mortality, sudden death and major adverse cardiovascular events in ischemic and nonischemic cardiomyopathy: a systematic review and meta-analysis. Int J Cardiol. 2018;254:230–7.

    Article  Google Scholar 

  15. Becker M, Cornel J, van de Ven P, van Rossum AC, Allaart CP, Germans T. The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy: a review and meta-analysis. JACC Cardiovasc Imaging. 2018;11:1274–84.

    Article  Google Scholar 

  16. Disertori M, Rigoni M, Pace N, et al. Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta-analysis. JACC Cardiovasc Imaging. 2016;9:1046–55.

    Article  Google Scholar 

  17. Engel G, Cho S, Ghayoumi A, Yamazaki T, Chun S, Fearon WF, et al. Prognostic significance of PVCs and resting heart rate. Ann Noninvasive Electrocardiol. 2007;12:121–9.

    Article  Google Scholar 

  18. Ellis ER, Josephson ME. What about tachycardia-induced cardiomyopathy? Arrhythm Electrophysiol Rev. 2013;2(2):82–90.

    Article  Google Scholar 

  19. SadronBlaye-Felice M, Hamon D, Sacher F, et al. Premature ventricular contraction-induced cardiomyopathy: related clinical and electrophysiologic parameters. Heart Rhythm. 2016;13(1):103–10.

    Article  Google Scholar 

  20. Carballeira Pol L, Deyell MW, Frankel DS, et al. Ventricular premature depolarization QRS duration as a new marker of risk for the development of ventricular premature depolarization-induced cardiomyopathy. Heart Rhythm. 2014;11(2):299–306.

    Article  Google Scholar 

  21. Kim DY, Kim SH, Ryu KH. Tachycardia induced cardiomyopathy. Korean Circ J. 2019;49(9):808–17.

    Article  CAS  Google Scholar 

  22. Huizar JF, Fisher SG, Ramsey FV, Kaszala K, Tan AY, Moore H, Koneru JN, Kron J, Padala SK, Ellenbogen KA, Singh SN. Outcomes of premature ventricular contraction-cardiomyopathy in the veteran population: a secondary analysis of the CHF-STAT study. JACC Clin Electrophysiol. 2021;7(3):380–90.

    Article  Google Scholar 

  23. Liao Z, Zhan X, Wu S, Xue Y, Fang X, Liao H, Deng H, Liang Y, Wei W, Liu Y, Ouyang F. Idiopathic ventricular arrhythmias originating from the pulmonary sinus cusp: prevalence, electrocardiographic/electrophysiological characteristics, and catheter ablation. J Am Coll Cardiol. 2015;66(23):2633–44.

    Article  Google Scholar 

  24. Zhang J, Tang C, Zhang Y, Su X. Pulmonary sinus cusp mapping and ablation: a new concept and approach for idiopathic right ventricular outflow tract arrhythmias. Heart Rhythm. 2018;15:38–45.

    Article  Google Scholar 

  25. Heeger CH, Kuck KH, Ouyang F. Catheter ablation of pulmonary sinus cusp-derived ventricular arrhythmias by the reversed U-curve technique. J Cardiovasc Electrophysiol. 2017;28(7):776–7.

    Article  Google Scholar 

  26. Futyma P, Moroka K, Derndorfer M, Kollias G, Martinek M, Pürerfellner H. Left pulmonary cusp ablation of refractory ventricular arrhythmia originating from the inaccessible summit. Europace. 2019;21(8):1253.

    Article  Google Scholar 

  27. Liang Z, Wang Y, Zhang T, Han Z, Dong J, Ren X. Catheter ablation of ventricular arrhythmias with QRS morphology resembling that of aortic sinus cusp arrhythmias: significance of mapping the left pulmonary sinus cusp. J Cardiovasc Electrophysiol. 2018;29(4):591–9.

    Article  Google Scholar 

  28. Dong X, Sun Q, Tang M, Zhang S. Catheter ablation of ventricular arrhythmias originating from the junction of the pulmonary sinus cusp via a nonreversed U curve approach. Heart Rhythm. 2019;16(10):1513–20.

    Article  Google Scholar 

  29. Yokokawa M, Morady F, Bogun F. Injection of cold saline for diagnosis of intramural ventricular arrhythmias. Heart Rhythm. 2016;13(1):78–82.

    Article  Google Scholar 

  30. Nagashima K, Choi EK, Lin KY, Kumar S, Tedrow UB, Koplan BA, Michaud GF, John RM, Epstein LM, Tokuda M, Inada K, Couper GS, Stevenson WG. Ventricular arrhythmias near the distal great cardiac vein: challenging arrhythmia for ablation. Circ Arrhythm Electrophysiol. 2014;7(5):906–12.

    Article  Google Scholar 

  31. Suresh A, Chang SL, Lin YJ, Lo LW, Chung FP, Chen SA. Ablation of ventricular tachycardia arising from the great cardiac vein - a rare cause of coronary artery injury. Acta Cardiol Sin. 2017;33(5):553–5.

    Google Scholar 

  32. Baszko A, Kałmucki P, Siminiak T, Szyszka A. Telescopic coronary sinus cannulation for mapping and ethanol ablation of arrhythmia originating from left ventricular summit. Cardiol J. 2020;27(3):312–5.

    Article  Google Scholar 

  33. Enriquez A, Malavassi F, Saenz LC, Supple G, Santangeli P, Marchlinski FE, Garcia FC. How to map and ablate left ventricular summit arrhythmias. Heart Rhythm. 2017;14(1):141–8.

    Article  Google Scholar 

  34. Tavares L, Lador A, Fuentes S, Da-Wariboko A, Blaszyk K, Malaczynska-Rajpold K, Papiashvili G, Korolev S, Peichl P, Kautzner J, Webber M, Hooks D, Rodríguez-Mañero M, Di Toro D, Labadet C, Sasaki T, Okishige K, Patel A, Schurmann PA, Dave AS, Rami TG, Valderrábano M. Intramural venous ethanol infusion for refractory ventricular arrhythmias: outcomes of a multicenter experience. JACC Clin Electrophysiol. 2020;6(11):1420–31.

    Article  Google Scholar 

  35. Guandalini GS, Santangeli P, Schaller R, Pothineni NVK, Briceño DF, Enriquez A, Razminia P, Tung R, Marchlinski FE, Garcia FC. Intramyocardial mapping of ventricular premature depolarizations via septal venous perforators: differentiating the superior intraseptal region from left ventricular summit origins. Heart Rhythm. 2022:S1547–5271(22)00220-X.

  36. Tung R, Liu Q, Jiang R, Jiang C. Nonionic irrigated radiofrequency ablation of refractory incessant ventricular tachycardia via great cardiac vein. HeartRhythm Case Rep. 2018;4(12):572–5.

    Article  Google Scholar 

  37. Santangeli P, Marchlinski FE, Zado ES, Benhayon D, Hutchinson MD, Lin D, Frankel DS, Riley MP, Supple GE, Garcia FC, Bala R, Desjardins B, Callans DJ, Dixit S. Percutaneous epicardial ablation of ventricular arrhythmias arising from the left ventricular summit: outcomes and electrocardiogram correlates of success. Circ Arrhythm Electrophysiol. 2015;8(2):337–43.

    Article  Google Scholar 

  38. Neira V, Santangeli P, Futyma P, Sapp J, Valderrabano M, Garcia F, Enriquez A. Ablation strategies for intramural ventricular arrhythmias. Heart Rhythm. 2020;17(7):1176–84. This review provides an overview of each one of ablation techniques used for treatment of intramural arrhythmias, including their main advantages and limitations.

    Article  Google Scholar 

  39. Kay GN, Epstein AE, Bubien RS, Anderson PG, Dailey SM, Plumb VJ. Intracoronary ethanol ablation for the treatment of recurrent sustained ventricular tachycardia. J Am Coll Cardiol. 1992;19:159–68.

    Article  CAS  Google Scholar 

  40. Tavares L, Lador A, Fuentes S, Da-Wariboko A, Blaszyk K, Malaczynska-Rajpold K, Papiashvili G, Korolev S, Peichl P, Kautzner J, Webber M, Hooks D, Rodríguez-Mañero M, Di Toro D, Labadet C, Sasaki T, Okishige K, Patel A, Schurmann PA, Dave AS, Rami TG, Valderrábano M. Intramural venous ethanol infusion for refractory ventricular arrhythmias: outcomes of a multicenter experience. JACC Clin Electrophysiol. 2020;6(11):1420–31.

    Article  Google Scholar 

  41. Da-Wariboko A, Lador A, Tavares L, et al. Double-balloon technique for retrograde venous ethanol ablation of ventricular arrhythmias in the absence of suitable intramural veins. Heart Rhythm. 2020;17(12):2126–34.

    Article  Google Scholar 

  42. Nath S, DiMarco JP, Gallop RG, McRury ID, Haines DE. Effects of dispersive electrode position and surface area on electrical parameters and temperature during radiofrequency catheter ablation. Am J Cardiol. 1996;77:765–7.

    Article  CAS  Google Scholar 

  43. Jain MK, Tomassoni G, Riley RE, Wolf PD. Effect of skin electrode location on radiofrequency ablation lesions: an in vivo and a three-dimensional finite element study. J Cardiovasc Electrophysiol. 1998;9:1325–35.

    Article  CAS  Google Scholar 

  44. Shapira-Daniels A, Barkagan M, Rottmann M, Sroubek J, Tugal D, Carlozzi MA, McConville JW, Buxton AE, Anter E. Modulating the baseline impedance: an adjunctive technique for maximizing radiofrequency lesion dimensions in deep and intramural ventricular substrate: an adjunctive technique for maximizing radiofrequency lesion dimensions in deep and intramural ventricular substrate. Circ Arrhythm Electrophysiol. 2019;12(6): e007336.

    Article  CAS  Google Scholar 

  45. Futyma P, Kułakowski P. Frontal placement of dispersive patch for effective ablation of arrhythmia originating from the anterior right ventricular outflow tract. J Interv Card Electrophysiol. 2017;49(3):327.

    Article  Google Scholar 

  46. Teh AW, Reddy VY, Koruth JS, Miller MA, Choudry S, D’Avila A, Dukkipati SR. Bipolar radiofrequency catheter ablation for refractory ventricular outflow tract arrhythmias. J Cardiovasc Electrophysiol. 2014;25(10):1093–9.

    Article  Google Scholar 

  47. Futyma P, Santangeli P, Pürerfellner H, Pothineni NV, Głuszczyk R, Ciąpała K, Moroka K, Martinek M, Futyma M, Marchlinski FE, Kułakowski P. Anatomic approach with bipolar ablation between the left pulmonic cusp and left ventricular outflow tract for left ventricular summit arrhythmias. Heart Rhythm. 2020;17(9):1519–27.

    Article  Google Scholar 

  48. Zhou B, Yu J, Ju W, Li X, Zhang F, Chen H, Li M, Gu K, Xie X, Cheng D, Wang X, Wu Y, Zhou J, Zhang B, Kojodjojo P, Cao K, Yang B, Chen M. Bipolar catheter ablation strategies for outflow tract ventricular arrhythmias refractory to unipolar ablation. J Cardiovasc Electrophysiol. 2022;33(8):1769–78.

  49. Futyma P, Sander J, Ciąpała K, Głuszczyk R, Wysokińska A, Futyma M, Kułakowski P. Bipolar radiofrequency ablation delivered from coronary veins and adjacent endocardium for treatment of refractory left ventricular summit arrhythmias. J Interv Card Electrophysiol. 2020;58(3):307–13.

    Article  Google Scholar 

  50. Tokioka S, Fukamizu S, Kawamura I, Kitamura T, Hojo R. Bipolar radiofrequency catheter ablation between the left ventricular endocardium and great cardiac vein for refractory ventricular premature complexes originating from the left ventricular summit. J Arrhythm. 2020;36(2):363–6.

    Article  Google Scholar 

  51. Waight MC, Wiles BM, Li AC, Saba MM. Bipolar radiofrequency ablation of septal ventricular tachycardia facilitated by an intramural catheter. JACC Case Rep. 2021;3(8):1119–24.

    Article  Google Scholar 

  52. Futyma P, Ciąpała K, Sander J, Głuszczyk R, Futyma M, Kułakowski P. Bipolar radiofrequency ablation of ventricular arrhythmias originating in the vicinity of his bundle. Circ Arrhythm Electrophysiol. 2020;13(3): e008165.

    Article  Google Scholar 

  53. Futyma P, Kułakowski P. Bipolar ablation delivered between the pulmonary and aortic valve cusps. Rev Esp Cardiol (Engl Ed). 2019;72(12):1078. English, Spanish.

  54. Futyma P, Wysokińska A, Sander J, Futyma M, Kułakowski P. Bipolar endo-epicardial radiofrequency ablation of arrhythmia originating from the left ventricular summit. Circ J. 2018;82(6):1721–2.

    Article  Google Scholar 

  55. Igarashi M, Nogami A, Fukamizu S, Sekiguchi Y, Nitta J, Sakamoto N, Sakamoto Y, Kurosaki K, Takahashi Y, Kimata A, Komatsu Y, Machino T, Kuroki K, Yamasaki H, Aonuma K, Ieda M. Acute and long-term results of bipolar radiofrequency catheter ablation of refractory ventricular arrhythmias of deep intramural origin. Heart Rhythm. 2020;17(9):1500–7.

    Article  Google Scholar 

  56. Yamada T, McElderry HT, Doppalapudi H, Kay GN. Successful radiofrequency catheter ablation of ventricular tachycardia originating from underneath the mechanical prosthetic aortic valve. Pacing Clin Electrophysiol. 2008;31(5):618–20.

    Article  Google Scholar 

  57. Srivatsa UN, Nordsieck EJ, Pezeshkian N, Yang Y, Southard J. Ablation of ventricular tachycardia from the aortic root after transcatheter aortic valve replacement. HeartRhythm Case Rep. 2018;4(6):201–3.

    Article  Google Scholar 

  58. Aras D, Topaloglu S, Ozeke O, Ozcan F, Cay S, Golbasi Z. Percutaneous interventricular septal access guided by subcostal echocardiography and fluoroscopy for ventricular tachycardia ablation in a patient with aortic and mitral mechanical valves. J Innov Card Rhythm Manag. 2019;10(7):3719–21.

    Article  Google Scholar 

  59. Santangeli P, Shaw GC, Marchlinski FE. Radiofrequency wire facilitated interventricular septal access for catheter ablation of ventricular tachycardia in a patient with aortic and mitral mechanical valves. Circ Arrhythm Electrophysiol. 2017;10(1):e004771.

    Article  Google Scholar 

  60. Vaseghi M, Macias C, Tung R, Shivkumar K. Percutaneous interventricular septal access in a patient with aortic and mitral mechanical valves: a novel technique for catheter ablation of ventricular tachycardia. Heart Rhythm. 2013;10(7):1069–73.

    Article  Google Scholar 

  61. Santangeli P, Hyman MC, Muser D, Callans DJ, Shivkumar K, Marchlinski FE. Outcomes of percutaneous trans-right atrial access to the left ventricle for catheter ablation of ventricular tachycardia in patients with mechanical aortic and mitral valves. JAMA Cardiol. 2020;6(3):1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Futyma.

Ethics declarations

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Dr. Futyma has reported patent applications related to bipolar and high-voltage ablation and has equity in CorSystem. Other authors report no conflict related to the content of the article. No funding was received.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Futyma, P., Zarębski, Ł., Chen, S. et al. Risk Assessment and Management of Outflow Tract Arrhythmias Refractory to Prior Treatments. Curr Cardiovasc Risk Rep 17, 21–26 (2023). https://doi.org/10.1007/s12170-022-00712-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-022-00712-z

Keywords

Navigation