Skip to main content
Log in

Volatile Constituents of Jambolan (Syzygium cumini L.) Fruits at Three Maturation Stages and Optimization of HS-SPME GC-MS Method Using a Central Composite Design

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

The volatile compounds of jambolan (Syzygium cumini L.) fruit were determined at three different maturity stages (unripe, half-ripe, and ripe) by headspace solid-phase microextraction (HS-SPME)–gas chromatography-mass spectrometry (GC-MS) technique using five different fibers (Fused silica PDMS/DVB, DVB/CAR/PDMS, PEG, Stable flex PDMS/DVB, and PDMS). The optimal extraction conditions were evaluated using different variables such as adsorption temperature (minimum 25 °C, maximum 55 °C), salt quantity (minimum 0, maximum 30.0%), and extraction time (min 10, max 30 min). The major classes of compounds identified were ester, terpene, alcohol, aldehyde, and carboxylic acid. Ninety volatile compounds with characteristics aroma attributes were identified, and the primary compounds linked with development of characteristics aroma of ripe jambolan fruit pulp were trans-β-ocimene, β-ocimene, caryophyllene, humulene, D-α-pinene, L-β-pinene, β-pinene, D-limonene, α-terpineol, neo-allo-ocimene, 2-hexenal (E), δ-cadinene, 3-hexen-1-ol, (Z) β-linalool, terpinolene, eremophilene, valencene, 1-hexanol, longipinene, γ-terpinene, γ-muurolene, endo-borneol, o-cymene, nonanal, terpinen-4-ol, β-terpineol, α-muurolene, fenchol, α-fenchene, β-thujene, benzaldehyde, (E)-2-hexenal, β-cadinene, and decanal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams RP (1995) 10 Identification of essential oil components by gas chromatography mass spectrometry, p 237–243

  • Adams RP (2012) Identification of essential oils by ion trap mass spectroscopy. Academic Press, New York

    Google Scholar 

  • Afify A, Fayed SA, Shalaby EA, El-Shemy HA (2011) Syzygium cumini (pomposia) active principles exhibit potent anticancer and antioxidant activities. Afr J Pharm Pharmacol 5:94

    Google Scholar 

  • Arctander (1969) Perfume and flavor chemicals. Montclair

  • Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

  • Barros L, Falcão S, Baptista P, Freire C, Vilas-Boas M, Ferreira IC (2008) Antioxidant activity of Agaricussp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem 111:61–66

    Article  CAS  Google Scholar 

  • Bopp A, De Bona K, Bellé L, Moresco R, Moretto M (2009) Syzygium cumini inhibits adenosine deaminase activity and reduces glucose levels in hyperglycemic patients. Fundam Clin Pharmacol 23:501–507

    Article  CAS  Google Scholar 

  • Braga FG, Bouzada MLM, Fabri RL, Matos MO, Moreira FO, Scio E, Coimbra ES (2007) Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J Ethnopharmacol 111:396–402

    Article  Google Scholar 

  • Cao G, Xu Z, Wu X, Li Q, Chen X (2014) Capture and identification of the volatile components in crude and processed herbal medicines through on-line purge and trap technique coupled with. GC × GC-TOF MS Nat Prod Res 28(19):1607–1612

    Article  CAS  Google Scholar 

  • Ceva-Antunes PMN, Bizzo HR, Alves SM, Antunes OAC (2003) Analysis of volatile compounds of tapereba (Spondias mombin L.) and caja (Spondias mombin L.) by simultaneous distillation and extraction (SDE) and solid phase microextraction (SPME). J Agric Food Chem 51(5):1387–1392

    Article  CAS  Google Scholar 

  • Chaudhary B, Mukhopadhyay K (2012) Syzygium cumini (L.) Skeels: A potential source of nutraceuticals. Int J Pharm Biol Sci 2:46–53

    CAS  Google Scholar 

  • Chen M-X, Chen X-S, Wang X-G, Ci Z-J, Liu X-L, He T-M, Zhang L-J (2006) Comparison of headspace solid-phase microextraction with simultaneous steam distillation extraction for the analysis of the volatile constituents in Chinese apricot. Agric Sci China 5:879–884

    Article  Google Scholar 

  • Cheong KW, Tan CP, Mirhosseini H, Chin ST, Chen Man YB, Hamid NSA, Basri M (2011) Optimization of equilibrium headspace analysis of volatile flavor compounds of Malaysian soursop (Annona muricata): comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC× GC-TOFMS). Food Chem 125:1481–1489

    Article  CAS  Google Scholar 

  • Craveiro A, Andrade C, Matos F, Alencar J, Machado M (1983) Essential oil of Eugenia jambolana. J Nat Prod 46:591–592

    Article  CAS  Google Scholar 

  • Dastur JF (1951) Useful plants of India and Pakistan, Delhi

  • De Brito ES, De Araujo MCP, Alves RE, Carkeet C, Clevidence BA, Novotny JA (2007) Anthocyanins present in selected tropical fruits: acerola, jambolão, jussara, and guajiru. J Agric Food Chem 55:9389–9394

    Article  Google Scholar 

  • de Sousa Galvão M, Narain N, dos Santos MDSP, Nunes ML (2011) Volatile compounds and descriptive odor attributes in umbu (Spondias tuberosa) fruits during maturation. Food Res Int 44:1919–1926

    Article  Google Scholar 

  • Deng J, Yang Y, Wang X, Luan T (2014) Strategies for coupling solid-phase microextraction with mass spectrometry. Trends Analyt Chem 55:55–67

    Article  CAS  Google Scholar 

  • Fiorini D, Caprioli G, Sagratini G, Maggi F, Vittori S, Marcantoni E, Ballini R (2014) Quantitative profiling of volatile and phenolic substances in the wine Vernaccia di Serrapetrona by development of an HS-SPME-GC-FID/MS method and HPLC-MS. Food Anal Methods 7:1651–1660

    Article  Google Scholar 

  • Fredes A, Sales C, Barreda M, Valcárcel M, Roselló S, Beltrán J (2016) Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography-mass spectrometry determination. Food Chem 190:689–700

    Article  CAS  Google Scholar 

  • Gonçalves C, Alpendurada MF (2002) Comparison of three different poly(dimethylsiloxane)-divinylbenzene fibres for the analysis of pesticide multiresidues in water samples: structure and efficiency. J Chromatogr A 963(1–2):19–26

    Article  Google Scholar 

  • Hampel D, Swatski A, Mosandl A, Wüst M (2007) Biosynthesis of monoterpenes and norisoprenoids in raspberry fruits (Rubus idaeus L.): the role of cytosolic mevalonate and plastidial methylerythritol phosphate pathway. J Agric Food Chem 55(22):9296–9304

    Article  CAS  Google Scholar 

  • Jeleń H, Majcher M, Gracka A (2017) Application of solid phase microextraction in food analysis—flavor and off-flavor sampling. In: Ouyang G, Jiang R (eds) Solid phase microextraction. Springer, Berlin, Heidelberg

    Google Scholar 

  • Jennings W (2012) Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography. Academic Press, New York

    Google Scholar 

  • Jennings W, Shibamoto T (1980) Compounds and their retention indices. Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography, Academic Press, NY, USA, p 29–57

  • Kataoka H, Lord HL, Pawliszyn J (2000) Applications of solid-phase microextraction in food analysis. J Chromatogr A 880:35–62

    Article  CAS  Google Scholar 

  • Khurdiya D, Roy S (1985) Processing of jamun (Syzygium cumini Linn) fruit into a ready to serve beverage. J Food Sci Technol 22:27–30

    Google Scholar 

  • Kim N-S, Lee D-S (2002) Comparison of different extraction methods for the analysis of fragrances from Lavandula species by gas chromatography–mass spectrometry. J Chromatogr A 982:31–47

    Article  CAS  Google Scholar 

  • Kondjoyan N, Berdagué J-L (1996) A compilation of relative retention indices for the analysis of aromatic compounds. Ed. du Laboratoire Flaveur

  • Koziel JA, Novak I (2002) Sampling and sample-preparation strategies based on solid-phase microextraction for analysis of indoor air. Trends Anal Chem 21:840–850

    Article  CAS  Google Scholar 

  • Kubola J, Siriamornpun S, Meeso N (2011) Phytochemicals, vitamin C and sugar content of Thai wild fruits. Food Chem 126:972–981

    Article  CAS  Google Scholar 

  • Lee SN, Kim KN, Lee DS (2003) Comparative study of extraction techniques for determination of garlic flavor components by gas chromatography-mass spectrometry. Anal Bioanal Chem 377:749–756

    Article  CAS  Google Scholar 

  • Li L, Adams LS, Chen S, Killian C, Ahmed A, Seeram NP (2009) Eugenia jambolana Lam. erry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J Agric Food Chem 57:826–831

    Article  CAS  Google Scholar 

  • Liberto E, Cagliero C, Cordero C, Rubiolo P, Bicchi C, Sgorbini B (2017) Fractionated dynamic headspace sampling in the analysis of matrices of vegetable origin in the food field. J Chromatog A 1489:18–28

    Article  CAS  Google Scholar 

  • Merib J, Nardini G, Bianchin JN, Dias AN, Simão V, Carasek E (2013) Use of two different coating temperatures for a cold fiber headspace solid-phase microextraction system to determine the volatile profile of Brazilian medicinal herbs. J Sep Sci 36:1410–1417

    Article  CAS  Google Scholar 

  • Morton JF (1987) Fruits of warm climates. JF Morton

  • Musteata FM, Pawliszyn J (2007) Bioanalytical applications of solid-phase microextraction. Trends Anal Chem 26:36–45

    Article  CAS  Google Scholar 

  • Najdoska-Bogdanov M, Bogdanov JB, Stefova M (2016) Changes in volatile compounds during aging of sweet fennel fruits-comparison of hydrodistillation and static headspace sampling methods. Nat Prod Commun 11(3):423–429

    Google Scholar 

  • Nie L, Sun J, Huang R (2003) The biosynthesis and affecting factors of aroma in some fruits. Chin Bull Bot 21:631–637

    Google Scholar 

  • Nur Aimi R, Abu Bakar F, Dzulkifly MH (2013) Determination of volatile compounds in fresh and fermented Nipa sap (Nypa fruticans) using static headspace gas chromatography-mass spectrometry (GC-MS). Int Food Res J 20(1):369–376

    Google Scholar 

  • Pellati F, Benvenuti S, Yoshizaki F, Bertelli D, Rossi MC (2005) Headspace solid-phase microextraction-gas chromatography-mass spectrometry analysis of the volatile compounds of Evodia species fruits. J Chromatogr A 1087:265–273

  • Piñeiro Z, Palma M, Barroso CG (2004) Determination of terpenoids in wines by solid phase extraction and gas chromatography. Anal Chim Acta 513(1):209–214

    Article  Google Scholar 

  • Plagemann I, Krings U, Berger RG, Marostica MR Jr (2012) Volatile constituents of jabuticaba (Myrciaria jaboticaba (Vell.) O. Berg) fruits. J Essent Oil Res 24(1):45–51

    Article  CAS  Google Scholar 

  • Rekha N, Balaji R, Deecaraman M (2010) Antihyperglycemic and antihyperlipidemic effects of extracts of the pulp of Syzygium cumini and bark of Cinnamon zeylanicum in streptozotocin-induced diabetic rats. J Appl Biosci 28:1718–1730

    Google Scholar 

  • Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Recent developments in solid-phase microextraction. Anal Bioanal Chem 393:781–795

    Article  CAS  Google Scholar 

  • Sardjono RE, Athiana AF, Gumilar GG, Rachmawati R (2017) Extraction of essential aroma compounds from several malodorous Indonesian plants using simultaneous steam distillation-extraction. Asian J Chem 29(3):679–682

    Article  CAS  Google Scholar 

  • Scharf DR, Simionatto EL, Kassuya CA, Stefanello MÉA (2016) Essential oil from Eugenia jambolana seeds: chemical composition and changes during storage. J Essent Oil Bear Pl 19:2077–2082

    Article  CAS  Google Scholar 

  • Seymour GB, Taylor JE, Tucker GA (2012) Biochemistry of fruit ripening. Springer Science & Business Media

  • Shafi P, Rosamma M, Jamil K, Reddy P (2002) Antibacterial activity of Syzygium cumini and Syzygium travancoricum leaf essential oils. Fitoterapia 73:414–416

    Article  CAS  Google Scholar 

  • Sharon Asa L et al (2003) Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J 36:664–674

    Article  CAS  Google Scholar 

  • Srivastava Y, Bhatt H, Gupta O, Gupta P (1983) Hypoglycemia induced by Syzygium cumini Linn. seeds in diabetes mellitus. Asian Med J 26:489–492

    Google Scholar 

  • Steinmetz E (1960) A botanical drug from the tropics used in the treatment of diabetes mellitus. Acta Phytotherapeutica 7:23–25

    CAS  Google Scholar 

  • Tabilio MR, Fiorini D, Marcantoni E, Materazzi S, Delfini M, De Salvador FR, Musmeci S (2013) Impact of the Mediterranean fruit fly (Medfly) Ceratitis capitata on different peach cultivars: The possible role of peach volatile compounds. Food Chem 140:375–381

    Article  CAS  Google Scholar 

  • Vesely P, Lusk L, Basarova G, Seabrooks J, Ryder D (2003) Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. J Agric Food Chem 51:6941–6944

    Article  CAS  Google Scholar 

  • Vijayanand P, Jagan Mohan Rao L, Narasimham P (2001) Volatile flavour components of jamun fruit (Syzygium cumini L). Flavour Frag J 16:47–49

    Article  CAS  Google Scholar 

  • Zhang M, Pan Q, Yan G, Duan C (2011) Using headspace solid phase micro-extraction for analysis of aromatic compounds during alcoholic fermentation of red wine. Food Chem 125:743–749

  • Zhang S, Sheng C, Zhang J, Li Y, You J (2017) Gas purge microsyringe extraction coupled with dispersive liquid-liquid microextraction for the determination of acidic compounds in food packaging materials. Food Anal Methods 10(5):1164–1171

    Article  Google Scholar 

  • Zhang W, Zhang Y, Yuan X, Sun E (2015) Determination of volatile compounds of Illicium verum Hook using simultaneous distillation-extraction and solid phase microextraction coupled with gas chromatography-mass spectrometry. Trop J Pharm Res 14(10):1879–1884

    Article  CAS  Google Scholar 

  • Zhang Z, Yang MJ, Pawliszyn J (1994) Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal Chem 66:844A–853A

    Article  CAS  Google Scholar 

  • Zhu H, Wang A, Qiu J, Li Z (2016) Changes of aroma compounds in Shanxi aged vinegar during its fermentation determined by dynamic headspace-gas chromatography. J Chin Inst Food Sci Technol 16(1):264–271

    CAS  Google Scholar 

Download references

Acknowledgments

All authors gratefully acknowledge the financial support received from CNPq, Brazil vide research project Instituto Nacional de Ciência e Tecnologia de FrutosTropicais (no. 573781/2008-7) in developing this work. Author PK Mehta acknowledge and thanks CAPES for the Post-Doctorate fellowship received from PNPD/CAPES (no 4616-69-2013-CAPES), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Mehta.

Ethics declarations

Conflict of Interest

Praveen Kumar Mehta declares that he has no conflict of interest.

Mércia de Sousa Galvão declares that she has no conflict of interest.

Alysson Caetano Soares declares that he has no conflict of interest.

Juliete Pedreira Nogueira declares that she has no conflict of interest.

Narendra Narain declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

Informed consent was not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, P.K., de Sousa Galvão, M., Soares, A.C. et al. Volatile Constituents of Jambolan (Syzygium cumini L.) Fruits at Three Maturation Stages and Optimization of HS-SPME GC-MS Method Using a Central Composite Design. Food Anal. Methods 11, 733–749 (2018). https://doi.org/10.1007/s12161-017-1038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-1038-4

Keywords

Navigation