Skip to main content
Log in

Automated Single-Phase Liquid-Liquid Extraction for Determination of Cr(VI) Using Graphite Furnace Atomic Absorption Spectrophotometry without Wet Digestion of Samples

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

This paper proposes a method to perform rapid and sensitive graphite furnace atomic absorption spectrometry (GFAAS) determination of Cr(VI) in vinegar samples without wet digestion. Taking into account low levels of Cr(VI) and the presence of several concomitants in the sample matrix, the proposed method uses single-phase liquid-liquid extraction (SPLLE). The method is automated, employing a flow-batch analyzer (FBA) which uses a mixing chamber designed to emulate a separation funnel promoting the formation/break of the single-phase solution, reaction and extraction. The Cr(VI) extraction procedure was performed by proportioned mixing of the vinegar sample (aqueous phase), amyl alcohol (organic phase), and ethanol (consolute) to form a single-phase solution. The chelating reagent sodium diethyldithiocarbamate (DDTC) dissolved in the consolute reacts rapidly with Cr(VI), in the single phase to produce a stable Cr-DDTC complex. The single-phase break step is performed by adding an excess of Britton-Robinson buffer, and then the organic phase enriched with Cr(VI) was analyzed by GFAAS. Factors such as extraction steps, single-phase composition, pH, chelating agent concentration, and flow-batch parameters were optimized. The FBA-SPLLE-GFAAS was evaluated in vinegar samples showing satisfactory analytical features in terms of limit of quantification (0.86 μg L −1), precision (RSD <12 %), characteristic mass (m0 = 0.32 pg), high sampling rate (26 h −1), and accuracy (recovery rate = 82–108 %). The proposed method requires one-step extraction and is eco-friendly since it consumes low amounts of non-toxic chemicals and generates little waste (about 700 μL per determination).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acar O (2005) Determination of lead, chromium, manganese and zinc in slurries of botanical and biological samples by electrothermal atomic absorption spectrometry using tungsten-containing chemical modifiers. Microchim Acta 151:53–58. doi:10.1007/s00604-005-0379-7

    Article  CAS  Google Scholar 

  • Alvarez-Cabal E, Wrobel K, Marchante JM, Sanz-Medel A (1994) Determination of chromium in biological fluids by electrothermal atomic absorption spectrometry using wall, platform and probe atomization from different graphite surfaces. J Anal At Spectrom 9:117–123. doi:10.1039/JA9940900117

    Article  Google Scholar 

  • American Cancer Society - ACS (2016) Information and resources for cancer: breast, colon, lung, prostate, skin. http://www.cancer.org/. Accessed 1 Jun 2016

  • Anthemidis AN, Zachariadis GA, Kougoulis J-S, Stratis JA (2002) Flame atomic absorption spectrometric determination of chromium(VI) by on-line preconcentration system using a PTFE packed column. Talanta 57:15–22. doi:10.1016/S0039-9140(01)00676-2

    Article  CAS  Google Scholar 

  • Atallah RH, Christian GD, Hartenstein SD (1988) Continuous flow solvent extraction system for the determination of trace amounts of uranium in nuclear waste reprocessing solutions. Analyst 113:463–469. doi:10.1039/AN9881300463

    Article  CAS  Google Scholar 

  • Bakkali K, Martos NR, Souhail B, Ballesteros E (2009) Characterization of trace metals in vegetables by graphite furnace atomic absorption spectrometry after closed vessel microwave digestion. Food Chem 116:590–594. doi:10.1016/j.foodchem.2009.03.010

    Article  CAS  Google Scholar 

  • Belloni JA, Di Nezio MS, Pistonesi MF, Centurión ME (2012) Automatic flow-batch system for the sample treatment and determination of hydroxyproline in sausages. Talanta 89:526–530. doi:10.1016/j.talanta.2011.12.019

    Article  CAS  Google Scholar 

  • Béni Á, Karosi R, Posta J (2007) Speciation of hexavalent chromium in waters by liquid–liquid extraction and GFAAS determination. Microchem J 85:103–108. doi:10.1016/j.microc.2006.05.004

    Article  Google Scholar 

  • Bergamin FH, Medeiros JX, Reis BF, Zagatto EAG (1978) Solvent extraction in continuous flow injection analysis. Anal Chim Acta 101:9–16. doi:10.1016/S0003-2670(01)83834-4

    Article  Google Scholar 

  • Burns DT, Danzer K, Townshend A (2009) Use of the term “recovery” and “apparent recovery” in analytical procedures (IUPAC Recommendations 2002). Pure Appl Chem 74:2201–2205. doi:10.1351/pac200274112201

    Google Scholar 

  • Cabrera-Vique C, Teissedre P-L, Cabanis M-T, Cabanis J-C (1997) Determination and levels of chromium in French wine and grapes by graphite furnace atomic absorption spectrometry. J Agric Food Chem 45:1808–1811. doi:10.1021/jf960691b

    Article  CAS  Google Scholar 

  • Carlosena A, Gallego M, Valcárcel M (1997) Evaluation of various sample preparation procedures for the determination of chromium, cobalt and nickel in vegetables. J Anal At Spectrom 12:479–486. doi:10.1039/A607939C

    Article  CAS  Google Scholar 

  • Cary EE, Kubota J (1990) Chromium concentration in plants: effects of soil chromium concentration and tissue contamination by soil. J Agric Food Chem 38:108–114. doi:10.1021/jf00091a022

    Article  CAS  Google Scholar 

  • Cauwenbergh RV, Hendrix P, Robberecht H, Deelstra HA (1996) Daily dietary chromium intake in Belgium, using duplicate portion sampling. Z Für Lebensm-Unters Forsch 203:203–206. doi:10.1007/BF01192863

    Article  Google Scholar 

  • Cocchi M, Franchini G, Manzini D, Manfredini M, Marchetti A, Ulrici A (2004) A Chemometric Approach to the Comparison of Different Sample Treatments for Metals Determination by Atomic Absorption Spectroscopy in Aceto Balsamico Tradizionale di Modena. J Agric Food Chem 52(13):4047–4056

  • Concon JM (1980) Food toxicology. Dekker, New York

    Google Scholar 

  • Cunha FAS, Sousa RA, Harding DP, et al. (2012) Automatic microemulsion preparation for metals determination in fuel samples using a flow-batch analyzer and graphite furnace atomic absorption spectrometry. Anal Chim Acta 727:34–40. doi:10.1016/j.aca.2012.03.014

    Article  CAS  Google Scholar 

  • Da Silva JF, Martins W (1992) Extraction of Fe(III), Cu(II), Co(II), Ni(II) and Pb(II) with thenoyltrifluoroacetone using the ternary solvent system water/ethanol/methylisobutylketone. Talanta 39:1307–1312. doi:10.1016/0039-9140(92)80242-6

    Article  CAS  Google Scholar 

  • Diniz PHGD, de Almeida LF, Harding DP, de Araújo MCU (2012) Flow-batch analysis. TrAC Trends Anal Chem 35:39–49. doi:10.1016/j.trac.2012.02.009

    Article  CAS  Google Scholar 

  • Dobrowolski R, Pawlowska-Kapusta I, Dobrzynska J (2012) Chromium determination in food by slurry sampling graphite furnace atomic absorption spectrometry using classical and permanent modifiers. Food Chem 132:597–602. doi:10.1016/j.foodchem.2011.10.084

    Article  CAS  Google Scholar 

  • Draper NR, Smith H (2014) Wiley: applied regression analysis, 3rd edition. http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471170828.html. Accessed 30 May 2016b

  • Facchin I, Martins JW, Zamora PGP, Pasquini C (1994) Single-phase liquid-liquid extraction in monosegmented continuous-flow systems. Anal Chim Acta 285:287–292. doi:10.1016/0003-2670(94)80067-7

    Article  CAS  Google Scholar 

  • Fan Z, Hu B, Jiang Z, Pan L (2005) Comparative studies on chemical modification by diethyldithiocarbamate for ETV-ICP-OES and ETAAS determination of chromium and nickel. Microchim Acta 153:211–217. doi:10.1007/s00604-005-0432-6

    Article  Google Scholar 

  • Freschi GPG, Dakuzaku CS, de Moraes M, et al. (2001) Simultaneous determination of cadmium and lead in wine by electrothermal atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc 56:1987–1993. doi:10.1016/S0584-8547(01)00331-7

    Article  Google Scholar 

  • Garcia AJC, Reis BF (2006) Instrumentation and automated photometric titration procedure for total acidity determination in red wine employing a multicommuted flow system. J Anal Methods Chem 2006:e83247. doi:10.1155/JAMMC/2006/83247

    Article  Google Scholar 

  • González AMT, Chozas MG (1988) Metallic contaminants in Andalusian vinegars. Food Nahr 32:743–748. doi:10.1002/food.19880320809

    Article  Google Scholar 

  • Harzdorf AC (1987) Analytical chemistry of chromium species in the environment, and interpretation of results. Int J Environ Anal Chem 29:249–261. doi:10.1080/03067318708075445

    Article  CAS  Google Scholar 

  • Herrmann G, Denschlag HO (1969) Rapid chemical separations. Annu Rev Nucl Sci 19:1–32. doi:10.1146/annurev.ns.19.120169.000245

    Article  CAS  Google Scholar 

  • Honorato RS, Araújo MCU, Lima RAC, et al. (1999) A flow-batch titrator exploiting a one-dimensional optimisation algorithm for end point search. Anal Chim Acta 396:91–97. doi:10.1016/S0003-2670(99)00366-9

    Article  CAS  Google Scholar 

  • Hughes K, Meek ME, Seed LJ, Shedden J (1994) Chromium and its compounds: evaluation of risks to health from environmental exposure in Canada. Environ Carcinog Ecotoxicol Rev 12:237–255. doi:10.1080/10590509409373443

    Article  Google Scholar 

  • Hyötyläinen T (2009) Critical evaluation of sample pretreatment techniques. Anal Bioanal Chem 394:743–758. doi:10.1007/s00216-009-2772-2

    Article  Google Scholar 

  • Junior MMS, Silva LOB, Leão DJ, Ferreira SLC (2014) Analytical strategies for determination of cadmium in Brazilian vinegar samples using ET AAS. Food Chem 160:209–213. doi:10.1016/j.foodchem.2014.03.090

    Article  CAS  Google Scholar 

  • Karlberg B, Thelander S (1978) Extraction based on the flow-injection principle. Anal Chim Acta 98:1–7. doi:10.1016/S0003-2670(01)83231-1

    Article  CAS  Google Scholar 

  • Katz SA, McNabb WM, Hazel JF (1962) Studies on the extraction of chromium(VI) by ketones. Anal Chim Acta 27:405–415

  • Krzysik M, Grajeta H, Prescha A (2008) Chromium content in selected convenience and fast foods in Poland. Food Chem 107:208–212. doi:10.1016/j.foodchem.2007.08.006

    Article  CAS  Google Scholar 

  • Kubá[ncirc] (1991) Liquid-liquid extraction flow injection analysis. Crit Rev Anal Chem 22:477–557. doi:10.1080/10408349108051643

    Article  Google Scholar 

  • Lakshmi Narayana S, Adi Narayana Reddy S, Subbarao Y, et al. (2010) A simple and highly sensitive spectrophotometric determination of Cr(VI) in food samples by using 3,4-dihydroxybenzaldehydeisonicotinoylhydrazone (3,4-DHBINH). Food Chem 121:1269–1273. doi:10.1016/j.foodchem.2010.01.042

    Article  CAS  Google Scholar 

  • Lima MB, Andrade SIE, Barreto IS, Araújo MCU (2015) In-line single-phase extraction for direct determination of total iron in oils using CdTe quantum dots and a flow-batch system. Anal Methods 7:7707–7714. doi:10.1039/C5AY01179E

    Article  CAS  Google Scholar 

  • Marqués MJ, Salvador A, Morales-Rubio A, de la Guardia M (2000) Chromium speciation in liquid matrices: a survey of the literature. Fresenius J Anal Chem 367:601–613. doi:10.1007/s002160000422

    Article  Google Scholar 

  • Medeiros EP, Nascimento ECL, Medeiros ACD, et al. (2004) Multicommutated generation of concentration gradients in a flow-batch system for metronidazole spectrophotometric determination in drugs. Anal Chim Acta 511:113–118. doi:10.1016/j.aca.2004.01.031

    Article  CAS  Google Scholar 

  • Ndung’u K, Hibdon S, Flegal AR (2004) Determination of lead in vinegar by ICP-MS and GFAAS: evaluation of different sample preparation procedures. Talanta 64:258–263. doi:10.1016/j.talanta.2004.02.017

    Article  Google Scholar 

  • Office of Enviromental Health Hazard Assessment - OEHHA (2014) In: OEHHA. http://oehha.ca.gov/proposition-65. Accessed 26 July 2016

  • Ozbek N, Koca M, Akman S (2016) A practical method for the determination of Al, B, Co, Cr, Cu, Fe, Mg, Mn, Pb, and Zn in different types of vinegars by microwave induced plasma optical emission spectrometry. Food Anal Methods 9:2246–2250. doi:10.1007/s12161-016-0421-x

    Article  Google Scholar 

  • Pavel J, Kliment J, Stoerk S, Suter O (1985) Preservation of traces of chromium(VI) in water and waste water samples. Fresenius Z Für Anal Chem 321:587–591. doi:10.1007/BF00464371

    Article  CAS  Google Scholar 

  • Pessoa HM, Lyra FH, de Castro EVR, et al. (2012) Comparison of different pre-treatment procedures for the determination of chromium in crude oil samples by GF AAS. J Braz Chem Soc 23:1421–1428. doi:10.1590/S0103-50532012005000004

    Article  CAS  Google Scholar 

  • Prasada Rao T, Karthikeyan S, Vijayalekshmy B, Iyer CSP (1998) Speciative determination of chromium(VI) and chromium(III) using flow-injection on-line preconcentration and flame atomic-absorption spectrometric detection. Anal Chim Acta 369:69–77. doi:10.1016/S0003-2670(98)00229-3

    Article  CAS  Google Scholar 

  • Rao VM, Sastri MN (1980) Solvent extraction of chromium: a review. Talanta 27:771–777. doi:10.1016/0039-9140(80)80106-8

    Article  CAS  Google Scholar 

  • Reilly C (1980) Metal contamination of food. Blackwell, London

    Google Scholar 

  • Siggia S, Hanna JG (1949) Analysis of three-component systems containing two mutually immiscible components. Anal Chem 21:1086–1089. doi:10.1021/ac60033a021

    Article  CAS  Google Scholar 

  • Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG (2009) Liquid–liquid extraction in flow analysis: a critical review. Anal Chim Acta 652:54–65. doi:10.1016/j.aca.2009.05.042

    Article  CAS  Google Scholar 

  • Soares ME, Bastos ML, Ferreira MA (1994) Determination of total chromium and chromium(VI) in animal feeds by electrothermal atomic absorption spectrometry. J Anal At Spectrom 9:1269–1272. doi:10.1039/JA9940901269

    Article  Google Scholar 

  • Sperling M, Yin X, Welz B (1992) Differential determination of chromium (VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry. Analyst 117:629–635. doi:10.1039/AN9921700629

    Article  CAS  Google Scholar 

  • Suturović ZJ, Marjanović NJ, Dostanić NM (1997) Potentiometric stripping analysis of lead in vinegars: development of a method. Food Nahr 41:111–113. doi:10.1002/food.19970410212

    Article  Google Scholar 

  • The Food and Nutrition Board - FNB (2001) Dietary reference intakes for vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, D.C.

    Google Scholar 

  • Thomaidis NS, Piperaki EA (2000) Effect of chemical modifiers on the kinetic parameters characterizing the electrothermal atomization of chromium. Spectrochim Acta Part B At Spectrosc 55:611–627. doi:10.1016/S0584-8547(00)00200-7

    Article  Google Scholar 

  • Xia L, Wu Y, Hu B (2007) Hollow-fiber liquid-phase microextraction prior to low-temperature electrothermal vaporization ICP-MS for trace element analysis in environmental and biological samples. J Mass Spectrom 42:803–810. doi:10.1002/jms.1216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge scholarships from the Brazilian funding agencies CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano F. Almeida.

Ethics declarations

Funding

This study was publicly funded by CNPq and CAPES.

Conflict of Interest

The authors Francisco Antonio da Silva Cunha, Anderson da Silva Gualberto Pereira, Julys Pablo Atayde Fernandes, Wellington da Silva Lyra, Mario Cesar Ugulino de Araújo, and Luciano Farias de Almeida declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animal subjects performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, F.A.S., Pereira, A.S.G., Fernandes, J.P.A. et al. Automated Single-Phase Liquid-Liquid Extraction for Determination of Cr(VI) Using Graphite Furnace Atomic Absorption Spectrophotometry without Wet Digestion of Samples. Food Anal. Methods 10, 921–930 (2017). https://doi.org/10.1007/s12161-016-0651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0651-y

Keywords

Navigation