Skip to main content
Log in

Voltammetric Determination of Thymol in Oregano Using CeO2-Modified Electrode in Brij® 35 Micellar Medium

Food Analytical Methods Aims and scope Submit manuscript

Abstract

Glassy carbon electrode (GCE) modified with CeO2 nanoparticles dispersed in 0.01 M Brij® 35 (CeO2-Brij® 35/GCE) has been developed for the determination of thymol in micellar medium. Scanning electron microscopy (SEM) data confirm immobilization of the nanomaterial on the electrode surface. The electrooxidation of thymol on CeO2-Brij® 35/GCE is an irreversible diffusion-controlled process with participation of two electrons and two protons. Differential pulse voltammetry has been used for the quantification of thymol. The linear dynamic range of the thymol determination is 0.700–10.1 and 10.1–606 μM with the limits of detection and quantification 0.20 and 0.65 μM, respectively. The approach developed has been applied for the quantification of thymol in oregano spices using preliminary micellar extraction with Brij® 35. The results of voltammetric determination are in good agreement with the data of standard spectrophotometric method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abu-Lafi S, Odeh I, Dewik H, Qabajah M, Hanus LO, Dembitsky VM (2008) Thymol and carvacrol production from leaves of wild Palestinian Majorana syriaca. Bioresour Technol 99:3914–3918

    Article  CAS  Google Scholar 

  • Aeschbach R, Löliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OT (1994) Anti-oxidant action of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36

    Article  CAS  Google Scholar 

  • Al-Abachi MQ, Al-Ward HS (2012) Batch and flow-injection spectrophotometric determination of thymol using procaine hydrochloride as a new chromogenic reagent. Baghdad Sci J 9:302–310

    Google Scholar 

  • Alekseeva LI (2009) Determining thymol and carvacrol by reversed-phase high-performance liquid chromatography. Pharm Chem J 43:665–667

    Article  CAS  Google Scholar 

  • Backheet EY (1998) Micro determination of eugenol, thymol and vanillin in volatile oils and plants. Phytochem Anal 9:134–140

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Behpour M, Masoum S, Meshki M (2014) Determination of trace amounts of thymol and caffeic acid in real samples using a graphene oxide nanosheet modified electrode: application of experimental design in voltammetric studies. RSC Adv 4:14270–14280

    Article  CAS  Google Scholar 

  • Braga PC, Dal Sasso M, Culici M, Bianchi T, Bordoni L, Marabini L (2006) Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology 77:130–136

    Article  CAS  Google Scholar 

  • Cantalapiedra A, Gismera MJ, Sevilla MT, Procopio JR (2014) Sensitive and selective determination of phenolic compounds from aromatic plants using an electrochemical detection coupled with HPLC method. Phytochem Anal 25:247–254

    Article  CAS  Google Scholar 

  • Evans WC (2009) Trease and Evans Pharmacognosy, 16th edn. Saunders Elsevier, New York

    Google Scholar 

  • Falcone P, Speranza B, Del Nobile MA, Corbo MR, Sinigaglia MJ (2005) A study on the antimicrobial activity of thymol intended as a natural preservative. Food Pro 68:1664–1670

    Article  CAS  Google Scholar 

  • Fiori GML, Bonato PS, Pereira MPM, Continia SHT, Pereira AMS (2013) Determination of thymol and carvacrol in plasma and milk of dairy cows using solid-phase microextraction. J Braz Chem Soc 24:837–846

    CAS  Google Scholar 

  • Gan T, Lv Z, Deng Y, Sun J, Shi Z, Liu Y (2015) Facile synthesis of monodisperse Ag@C@Ag core-double shell spheres for application in the simultaneous sensing of thymol and phenol. New J Chem 39:6244–6252

    Article  CAS  Google Scholar 

  • Ghiasvand A, Dowlatshah S, Nouraei N, Heidari N, Yazdankhah F (2015) A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey. J Chromatogr A 1406:87–93

    Article  CAS  Google Scholar 

  • Haeseler G, Maue D, Grosskreutz J, Bufler J, Nentwig B, Piepenbrock S, Dengler R, Leuwer M (2002) Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur J Anaesthesiol 19:571–579

    Article  CAS  Google Scholar 

  • Hajimehdipoor H, Shekarchi M, Khanavi M, Adib N, Amri M (2010) A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Pharmacogn Mag 6:154–158

    Article  CAS  Google Scholar 

  • Haque MDR, Ansari SH, Najmi AK, Naquvi KJ (2012) Validated HPLC analysis method for quantification of thymol content in Trachyspermum ammi and polyherbal unani formulation Arq zeera. Int J Pharm Pharm Sci 4:478–482

    CAS  Google Scholar 

  • Jaiswal PV, Ijeri VS, Srivastava AK (2001) Voltammetric behavior of α-tocopherol and its determination using surfactant + ethanol + water and surfactant + acetonitrile + water mixed solvent systems. Anal Chim Acta 441:201–206

    Article  CAS  Google Scholar 

  • Karami-Osboo R, Khodaverdi M, Ali-Akbari F (2010) Antibacterial effect of effective compounds of Satureja hortensis and Thymus vulgaris essential oils against Erwinia amylovora. J Agric Sci Technol 12:35–45

    CAS  Google Scholar 

  • Kiyanpoura V, Fakharia AR, Alizadeh R, Asghari B, Jalali-Heravi M (2009) Multivariate optimization of hydrodistillation-headspace solvent microextraction of thymol and carvacrol from Thymus transcaspicus. Talanta 79:695–699

    Article  Google Scholar 

  • Lau O-W, Luk S-F, Wong W-C (1998) Simultaneous determination of methyl salicylate and thymol in various pharmaceutical formulations by differential-pulse voltammetry using a glassy carbon electrode. Analyst 113:865–868

    Article  Google Scholar 

  • López MMC, Vilariño JML, Rodríguez MVG, Losada LFB (2011) Development, validation and application of micellar electrokinetic capillary chromatography method for routine analysis of catechins, quercetin and thymol in natural samples. Microchem J 99:461–469

    Article  Google Scholar 

  • Michelitsch A, Rittmannsberger A, Hüfner A, Rückert U, Likussar W (2004) Determination of isopropylmethylphenols in black seed oil by differential pulse voltammetry. Phytochem Anal 15:320–324

    Article  CAS  Google Scholar 

  • Mika J, Barek J, Zima J, Dejmkova H (2015) New flow-through coulometric detector with renewable working electrode material for flow injection analysis and HPLC. Electrochim Acta 154:397–403

    Article  CAS  Google Scholar 

  • Nicholson RS, Shain I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  • Piech R, Paczosa-Bator B (2015) Application of glassy carbon electrode modified with Nafion/MWCNTs for sensitive voltammetric determination of thymol. Acta Pol Pharm 72:1081–1088

    CAS  Google Scholar 

  • Razzaq ZL, Mohammed HJ (2014) Spectrophotometric determination of thymol in lastarine antiseptic by diazotization of 4-aminoantipyrine in the presence of triton X-100. Int J Eng Technol 14:104–111

    Google Scholar 

  • Roosta M, Ghaedi M, Daneshfar A, Sahraei R (2015) Ultrasound assisted microextraction-nano material solid phase dispersion for extraction and determination of thymol and carvacrol in pharmaceutical samples: experimental design methodology. J Chromatogr B 975:34–39

    Article  CAS  Google Scholar 

  • Scholz F (ed) (2002) Electroanalytical methods. Guide to experiments and applications. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Simić A, Manojlović D, Šegan D, Todorović M (2007) Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules 12:2327–2340

    Article  Google Scholar 

  • Stanković DM (2015) Sensitive voltammetric determination of thymol in essential oil of Carum copticum seeds using boron-doped diamond electrode. Anal Biochem 486:1–4

    Article  Google Scholar 

  • Vinas P, Soler-Romera MJ, Hernandez-Cordoba M (2006) Liquid chromatographic determination of phenol, thymol and carvacrol in honey using fluorimetric detection. Talanta 69:1063–1067

    Article  CAS  Google Scholar 

  • Yanishlieva NV, Marinova EM, Gordon MH, Raneva VG (1999) Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem 64:59–66

    Article  CAS  Google Scholar 

  • Zhao X, Du Y, Ye W, Lu D, Xia X, Wang C (2013) Sensitive determination of thymol based on CeO2 nanoparticle-decorated graphene hybrid film. New J Chem 37:4045–4051

    Article  CAS  Google Scholar 

  • Zima J, Cienciala M, Barek J, Moreira JC (2007) Determination of thymol using HPLC-ED with glassy carbon paste electrode. Chem Anal 52:1049–1057

    CAS  Google Scholar 

  • Ziyatdinova G, Giniyatova E, Budnikov H (2010) Cyclic voltammetry of retinol in surfactant media and its application for the analysis of real samples. Electroanal 22:2708–2713

    Article  CAS  Google Scholar 

  • Ziyatdinova GK, Giniyatova ER, Budnikov GK (2012a) Voltammetric determination of α-tocopherol in the presence of surfactants. J Anal Chem 67:467–473

  • Ziyatdinova G, Ziganshina E, Budnikov H (2012b) Voltammetric determination of β-carotene in raw vegetables and berries in Triton X100 media. Talanta 99:1024–1029

  • Ziyatdinova GK, Ziganshina ER, Budnikov HC (2012c) Application of surfactants in voltammetric analysis. J Anal Chem 67:869–879

  • Ziyatdinova G, Ziganshina E, Budnikov H (2013) Voltammetric sensing and quantification of eugenol using nonionic surfactant self-organized media. Anal Methods 5:4750–4756

  • Ziyatdinova GK, Ziganshina ER, Nguyen Cong P, Budnikov HC (2016) Determination of the antioxidant capacity of the micellar extracts of spices in Brij® 35 medium by differential pulse voltammetry. J Anal Chem 71:573–580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the subsidy allocated to Kazan Federal University for the project part of state assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guzel Ziyatdinova.

Ethics declarations

Conflict of Interest

Guzel Ziyatdinova declares that she has no conflict of interest.

Endzhe Ziganshina declares that she has no conflict of interest.

Phuc Nguyen Cong declares that he has no conflict of interest.

Herman Budnikov declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyatdinova, G., Ziganshina, E., Cong, P.N. et al. Voltammetric Determination of Thymol in Oregano Using CeO2-Modified Electrode in Brij® 35 Micellar Medium. Food Anal. Methods 10, 129–136 (2017). https://doi.org/10.1007/s12161-016-0562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0562-y

Keywords

Navigation