Skip to main content
Log in

Hydrogen and Fatty Acid Production by Dark Fermentation of Sweet Sorghum Stalks as an Efficient Pre-treatment for Energy Recovery Before Their Bioconversion into Methane

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Hydrogen, volatile fatty acids (VFAs), and methane coproduction from sweet sorghum stems using bacterial consortium was investigated as an efficient and sustainable pre-treatment strategy to improve energy recovery. Integrated two-stage dark fermentation and methanization approach aimed to reduce fractionation, juice extraction, and pre-treatment steps to improve the efficiency and sustainability of stalks energy bioconversion. Stems biomass loading did not significantly influence hydrogen and VFAs productivities. Energy recovery yields were (7.07) and (10.01) MJ/kg dry matter (DM), respectively, for raw stem single dark fermentation (DF) and methanization processes, corresponding to 41.22% and 58.37% of raw stalk energy potential. Methanogenic potential increase of 31.9% and energy bioconversion yield of 13.21 MJ/kg DM were reached for solid residues from DF (80.75% of their energy content), suggesting that bacterial consortium efficiently pre-treated sorghum stalk fibers. Coupling process led to 88.74% net biomass energy recovery yield, corresponding respectively to 57.38% and 40.23% more than single DF and methanization. Fiber degradation ability of DF bacterial consortium significantly contributed to improve sorghum stalk energy recovery efficiency and cost-competitiveness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Islam MS, Zhang Z, Qu S-B et al (2021) Coproduction of hydrogen and volatile fatty acids via integrated two-step fermentation of sweet sorghum stalks by alkaline and enzymatic treatment. Biomass Bioenergy 145:105923. https://doi.org/10.1016/j.biombioe.2020.105923

    Article  CAS  Google Scholar 

  2. Chen J, Huang S, Kamran HW (2023) Empowering sustainability practices through energy transition for sustainable development goal 7: the role of energy patents and natural resources among European Union economies through advanced panel. Energy Policy 176:113499. https://doi.org/10.1016/j.enpol.2023.113499

    Article  Google Scholar 

  3. Agrawal R, Verma A, Singhania RR et al (2021) Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour Technol 332:125042. https://doi.org/10.1016/j.biortech.2021.125042

    Article  CAS  PubMed  Google Scholar 

  4. Liu Z, Li H, Gao X et al (2022) Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nat Commun 13:4716. https://doi.org/10.1038/s41467-022-32451-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Basak B, Kumar R, Bharadwaj AVSLS et al (2023) Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Bioresour Technol 369:128413. https://doi.org/10.1016/j.biortech.2022.128413

    Article  CAS  PubMed  Google Scholar 

  6. Sampath P, Brijesh RKR et al (2020) Biohydrogen production from organic waste – a review. Chem Eng Technol 43:1240–1248. https://doi.org/10.1002/ceat.201900400

    Article  CAS  Google Scholar 

  7. Sillero L, Sganzerla WG, Forster-Carneiro T et al (2022) A bibliometric analysis of the hydrogen production from dark fermentation. Int J Hydrog Energy 47:27397–27420. https://doi.org/10.1016/j.ijhydene.2022.06.083

    Article  CAS  Google Scholar 

  8. Fuess LT, Dos Santos GM, Delforno TP et al (2020) Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries. Renew Energy 158:3–12. https://doi.org/10.1016/j.renene.2020.05.063

    Article  CAS  Google Scholar 

  9. Parvathy Eswari A, Ravi YK, Kavitha S, Rajesh Banu J (2023) Recent insight into anaerobic digestion of lignocellulosic biomass for cost effective bioenergy generation. E-Prime - Adv Electr Eng Electron Energy 3:100119. https://doi.org/10.1016/j.prime.2023.100119

    Article  Google Scholar 

  10. Awogbemi O, Kallon DVV (2022) Pretreatment techniques for agricultural waste. Case Stud Chem Environ Eng 6:100229. https://doi.org/10.1016/j.cscee.2022.100229

    Article  CAS  Google Scholar 

  11. Timofeeva SS, Karaeva JV, Kovalev AA et al (2023) Steam gasification of digestate after anaerobic digestion and dark fermentation of lignocellulosic biomass to produce syngas with high hydrogen content. Int J Hydrog Energy 48:7559–7568. https://doi.org/10.1016/j.ijhydene.2022.11.260

    Article  CAS  Google Scholar 

  12. Hamadou B, Djomdi D, Zieba Falama R et al (2023) Optimization of energy recovery efficiency from sweet sorghum stems by ethanol and methane fermentation processes coupling. Bioengineered 14:228–244. https://doi.org/10.1080/21655979.2023.2234135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang W, Wu X, Huang C et al (2021) Natural surfactant-aided dilute sulfuric acid pretreatment of waste wheat straw to enhance enzymatic hydrolysis efficiency. Bioresour Technol 324:124651. https://doi.org/10.1016/j.biortech.2020.124651

    Article  CAS  PubMed  Google Scholar 

  14. Haldar D, Purkait MK (2021) A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: mechanistic insight and advancements. Chemosphere 264:128523. https://doi.org/10.1016/j.chemosphere.2020.128523

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Wong JL, Khadaroo SNBA, Cheng JLY et al (2023) Green solvent for lignocellulosic biomass pretreatment: an overview of the performance of low transition temperature mixtures for enhanced bio-conversion. Mater 1:100012. https://doi.org/10.1016/j.nxmate.2023.100012

    Article  Google Scholar 

  16. Bakari H, Djomdi, Falama Ruben Z, et al (2023) Optimization of bioethanol production after enzymatic treatment of sweet sorghum stalks. Waste Biomass Valorizationhttps://doi.org/10.1007/s12649-022-02026-y

  17. Paramasivan S, Sankar S, Senthil Velavan R et al (2021) Assessing the potential of lignocellulosic energy crops as an alternative resource for bioethanol production using ultrasound assisted dilute acid pretreatment. Mater Today Proc 45:3279–3285. https://doi.org/10.1016/j.matpr.2020.12.470

    Article  CAS  Google Scholar 

  18. Wang R, Wang K, Zhou M et al (2021) Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. Bioresour Technol 328:124873. https://doi.org/10.1016/j.biortech.2021.124873

    Article  CAS  PubMed  Google Scholar 

  19. Ling R, Wu W, Yuan Y et al (2021) Investigation of choline chloride-formic acid pretreatment and Tween 80 to enhance sugarcane bagasse enzymatic hydrolysis. Bioresour Technol 326:124748. https://doi.org/10.1016/j.biortech.2021.124748

    Article  CAS  PubMed  Google Scholar 

  20. Li W, Shen Y, Liu H et al (2023) Bioconversion of lignocellulosic biomass into bacterial nanocellulose: challenges and perspectives. Green Chem Eng 4:160–172. https://doi.org/10.1016/j.gce.2022.04.007

    Article  Google Scholar 

  21. Noblecourt A, Christophe G, Larroche C et al (2017) High hydrogen production rate in a submerged membrane anaerobic bioreactor. Int J Hydrog Energy 42:24656–24666. https://doi.org/10.1016/j.ijhydene.2017.08.037

    Article  CAS  Google Scholar 

  22. Ribeiro T, Cresson R, Pommier S et al (2020) Measurement of biochemical methane potential of heterogeneous solid substrates: results of a two-phase French inter-laboratory study. Water 12:2814. https://doi.org/10.3390/w12102814

    Article  CAS  Google Scholar 

  23. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  24. Latimer GW (2023) Official methods of analysis of AOAC International, 22nd ed. Oxford University PressNew York. https://doi.org/10.1093/9780197610145.001.0001

  25. Soest PJV (1963) Use of detergents in the analysis of fibrous feeds. II. A Rapid Method for the Determination of Fiber and Lignin. J AOAC Int 46:829–835. https://doi.org/10.1093/jaoac/46.5.829

    Article  Google Scholar 

  26. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  27. Feng Y (2022) Effects of different concentrations of sorghum straw on hydrogen production by oscillating photosynthetic organisms. In AIP Conference Proceedings. AIP Publishing LLC. Xi’an, China, 2474:020020. https://doi.org/10.1063/5.0079072

  28. Ntaikou I, Gavala HN, Kornaros M, Lyberatos G (2008) Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int J Hydrog Energy 33:1153–1163. https://doi.org/10.1016/j.ijhydene.2007.10.053

    Article  CAS  Google Scholar 

  29. Noblecourt A, Christophe G, Larroche C, Fontanille P (2018) Hydrogen production by dark fermentation from pre-fermented depackaging food wastes. Bioresour Technol 247:864–870. https://doi.org/10.1016/j.biortech.2017.09.199

    Article  CAS  PubMed  Google Scholar 

  30. Antonopoulou G, Gavala HN, Skiadas IV, Lyberatos G (2010) Influence of pH on fermentative hydrogen production from sweet sorghum extract. Int J Hydrog Energy 35:1921–1928. https://doi.org/10.1016/j.ijhydene.2009.12.175

    Article  CAS  Google Scholar 

  31. Panagiotopoulos IA, Bakker RR, De Vrije T et al (2010) Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 35:7738–7747. https://doi.org/10.1016/j.ijhydene.2010.05.075

    Article  CAS  Google Scholar 

  32. Wu Q, Bao X, Guo W et al (2019) Medium chain carboxylic acids production from waste biomass: current advances and perspectives. Biotechnol Adv 37:599–615. https://doi.org/10.1016/j.biotechadv.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  33. Fontanille P, Kumar V, Christophe G et al (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 114:443–449. https://doi.org/10.1016/j.biortech.2012.02.091

    Article  CAS  PubMed  Google Scholar 

  34. Antonopoulou G, Gavala HN, Skiadas IV et al (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119. https://doi.org/10.1016/j.biortech.2006.11.048

    Article  CAS  PubMed  Google Scholar 

  35. Nurika I, Shabrina EN, Azizah N et al (2022) Application of ligninolytic bacteria to the enhancement of lignocellulose breakdown and methane production from oil palm empty fruit bunches (OPEFB). Bioresour Technol Rep 17:100951. https://doi.org/10.1016/j.biteb.2022.100951

    Article  CAS  Google Scholar 

  36. Tsegaye B, Balomajumder C, Roy P (2018) Biodegradation of wheat straw by Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 bacteria to enhance biofuel production by increasing total reducing sugars yield. Environ Sci Pollut Res 25:30585–30596. https://doi.org/10.1007/s11356-018-3056-1

    Article  CAS  Google Scholar 

  37. Singh JK, Chaurasia B, Dubey A et al (2020) Biological characterization and instrumental analytical comparison of two biorefining pretreatments for water hyacinth (Eichhornia crassipes) biomass hydrolysis. Sustainability 13:245. https://doi.org/10.3390/su13010245

    Article  CAS  Google Scholar 

  38. Tang Z, Wu C, Tang W et al (2023) Enhancing enzymatic saccharification of sunflower straw through optimal tartaric acid hydrothermal pretreatment. Bioresour Technol 385:129279. https://doi.org/10.1016/j.biortech.2023.129279

    Article  CAS  PubMed  Google Scholar 

  39. Jamaldheen SB, Sharma K, Rani A et al (2018) Comparative analysis of pretreatment methods on sorghum (Sorghum durra) stalk agrowaste for holocellulose content. Prep Biochem Biotechnol 48:457–464. https://doi.org/10.1080/10826068.2018.1466148

    Article  CAS  PubMed  Google Scholar 

  40. Nlandu H, Belkacemi K, Chorfa N et al (2020) Flax nanofibrils production via supercritical carbon dioxide pre-treatment and enzymatic hydrolysis. Can J Chem Eng 98:84–95. https://doi.org/10.1002/cjce.23596

    Article  CAS  Google Scholar 

  41. Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000. https://doi.org/10.1016/j.biortech.2011.04.052

    Article  CAS  PubMed  Google Scholar 

  42. Zheng Y, Lin H-M, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896. https://doi.org/10.1021/bp980087g

    Article  CAS  PubMed  Google Scholar 

  43. Głąb L, Sowiński J, Chmielewska J et al (2019) Comparison of the energy efficiency of methane and ethanol production from sweet sorghum (Sorghum bicolor (L.) Moench) with a variety of feedstock management technologies. Biomass Bioenergy 129:105332. https://doi.org/10.1016/j.biombioe.2019.105332

    Article  CAS  Google Scholar 

  44. Herrmann C, Heiermann M, Idler C (2011) Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour Technol 102:5153–5161. https://doi.org/10.1016/j.biortech.2011.01.012

    Article  CAS  PubMed  Google Scholar 

  45. Ostovareh S, Karimi K, Zamani A (2015) Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Ind Crops Prod 66:170–177. https://doi.org/10.1016/j.indcrop.2014.12.023

    Article  CAS  Google Scholar 

  46. Brown RC, Brown TR (2014) Biorenewable resources: engineering new products from agriculture. John Wiley & Sons Inc, Hoboken, NJ, USA. https://doi.org/10.1002/9781118524985

    Article  Google Scholar 

  47. Ruggeri B, Tommasi T, Sassi G (2010) Energy balance of dark anaerobic fermentation as a tool for sustainability analysis. Int J Hydrog Energy 35:10202–10211. https://doi.org/10.1016/j.ijhydene.2010.08.014

    Article  CAS  Google Scholar 

  48. Perera KRJ, Ketheesan B, Gadhamshetty V, Nirmalakhandan N (2010) Fermentative biohydrogen production: Evaluation of net energy gain. Int J Hydrog Energy 35:12224–12233. https://doi.org/10.1016/j.ijhydene.2010.08.037

    Article  CAS  Google Scholar 

  49. Ghimire A, Frunzo L, Pirozzi F et al (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045

    Article  CAS  ADS  Google Scholar 

  50. Singh N, Singhania RR, Nigam PS et al (2022) Global status of lignocellulosic biorefinery: challenges and perspectives. Bioresour Technol 344:126415. https://doi.org/10.1016/j.biortech.2021.126415

    Article  CAS  PubMed  Google Scholar 

  51. Yang E, Chon K, Kim K-Y et al (2023) Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: recent progress, carbon neutrality, and circular economy. Bioresour Technol 369:128380. https://doi.org/10.1016/j.biortech.2022.128380

    Article  CAS  PubMed  Google Scholar 

  52. Soares JF, Confortin TC, Todero I et al (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sustain Energy Rev 117:109484. https://doi.org/10.1016/j.rser.2019.109484

    Article  CAS  Google Scholar 

  53. Rorke D, Gueguim Kana EB (2016) Biohydrogen process development on waste sorghum (Sorghum bicolor) leaves: optimization of saccharification, hydrogen production and preliminary scale up. Int J Hydrog Energy 41:12941–12952. https://doi.org/10.1016/j.ijhydene.2016.06.112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the “Centre Imagerie Cellulaire Santé (CICS), UCA PARTNER, 63000 Clermont-Ferrand” and “Institut de Chimie de Clermont-Ferrand (ICCF)—UMR 6296” for their collaboration on biomass FESEM scanning and X-ray diffraction analyses.

Funding

Hamadou Bakari’s research mobility was financially supported by the French government through its Eiffel excellence scholarship program (Campus France (D21–0000000051)).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Bakari Hamadou, Christine Gardarin, Christelle Blavignac, Djomdi Djomdi, and Ruben Zieba Falama. The first draft of the manuscript was written by Bakari Hamadou, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Philippe Michaud.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Biomass loading did not significantly influence H2 and VFAs productivities.

DF bacterial consortium effectively pre-treated sorghum stem fibrous fractions.

DF solid residues had 31.9% higher methanogenic potential than raw stems.

DF and AD coupling process led to 88.74% of net energy production yield.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2095 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamadou, B., Djomdi, D., Falama, R.Z. et al. Hydrogen and Fatty Acid Production by Dark Fermentation of Sweet Sorghum Stalks as an Efficient Pre-treatment for Energy Recovery Before Their Bioconversion into Methane. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10724-9

Keywords

Navigation