Skip to main content
Log in

Investigation of Babassu Mesocarp Dissolution in the Presence of Deep Eutectic Solvents

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Babassu (Orbignya phalerata) is a valuable oleaginous fruit in Brazil’s economy. After processing to extract oil, large quantities of residual mesocarp are generated. Typically, this by-product finds reuse as an additive in animal feed or is sold as flour for human consumption. However, there is a pressing need for innovative approaches to valorize this residue and leverage new technologies to create value-added compounds. Most existing processes for lignocellulosic biomass suffer from low selectivity during pre-treatment, often neglecting essential fractions like lignin, which holds significant biotechnological potential. In this context, deep eutectic solvents (DES) have emerged as a promising alternative pre-treatment method, thanks to their remarkable properties, including the ability to solubilize lignin, recyclability, and catalytic capacity. This study investigates the dissolution of residual babassu mesocarp in various deep eutectic solvents at different temperatures (70–130 °C) and biomass:solvent ratios (0.05−0.1). Two initial candidates, choline chloride:acetic acid (CC:AA) and proline:acetic acid (PRO:AA), were chosen. Notably, CC:AA achieved an impressive dissolution yield of up to 97.6% by mass of the residual mesocarp, while PRO:AA reached up to 50.8% by mass, with the thermal effect proving highly significant. Interestingly, the biomass:solvent ratio showed minimal influence on dissolution yield. The analysis of liquid fractions revealed that, for CC:AA treatment, lignin content measured 2.3 mg/mL (70 °C), 9.8 mg/mL (100 °C), and 10.5 mg/mL (130 °C). In contrast, PRO:AA treatment resulted in lignin content of 3.1 mg/mL (70 °C), 2.3 mg/mL (100 °C), and 2.8 mg/mL (130 °C). Furthermore, PRO:AA treatment yielded a total carbohydrate concentration of 2.2 mg/mL (70 °C), 1.9 mg/mL (100 °C), and 3.9 mg/mL (130 °C). For CC:AA treatment, the respective values were 2.6 mg/mL (70 °C), 17.2 mg/mL (100 °C), and 29.6 mg/mL (130 °C). UV/VIS analyses confirmed the dissolution of lignin and hinted at the extraction of tannins and anthocyanins (in CC:AA), underscoring their catalytic potential. This study marks the initial step in dissolving babassu mesocarp in DES and presents a promising avenue for biomass valorization in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Orejuela-Escobar LM, Landázuri AC, Goodell B (2021) Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. J Biores Bioprod 6:83–107. https://doi.org/10.1016/j.jobab.2021.01.004

    Article  Google Scholar 

  2. Haldar D, Purkait MK (2021) A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: mechanistic insight and advancements. Chemosphere 264:128523. https://doi.org/10.1016/j.chemosphere.2020.128523

    Article  CAS  PubMed  Google Scholar 

  3. Zhou M, Fakayode OA, Yagoub AEGA, Ji Q, Zhou C (2022) Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Ren Sust Ener Rev 156:111986. https://doi.org/10.1016/j.rser.2021.111986

    Article  CAS  Google Scholar 

  4. Cao L, IKM Y, Liu Y et al (2018) Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour Technol 269:465–475. https://doi.org/10.1016/j.biortech.2018.08.065

    Article  CAS  PubMed  Google Scholar 

  5. World Food and Agriculture – Statistical Yearbook 2022 (2022) World Food and Agriculture – Statistical Yearbook 2022. FAO. https://doi.org/10.4060/cc2211en

    Book  Google Scholar 

  6. Siqueira MU, Contin B, Fernandes PRB, Ruschel-Soares R, Siqueira PU, Baruque-Ramos J (2022) Brazilian agro-industrial wastes as potential textile and other raw materials: a sustainable approach. Mat Circ Econo 4:9. https://doi.org/10.1007/s42824-021-00050-2

    Article  Google Scholar 

  7. Borges LA, Ramos KK, Felisberto MHF, Franciosi ERN, Efraim P (2023) Babassu mesocarp: a sustainable source for obtaining starch and new products. Starch 75:2200203. https://doi.org/10.1002/star.202200203

    Article  CAS  Google Scholar 

  8. Maniglia BC, Tessaro L, Lucas AA, Tapia-Blácido DR (2017) Bioactive films based on babassu mesocarp flour and starch. F Hydrocol 70:383–391. https://doi.org/10.1016/j.foodhyd.2017.04.022

    Article  CAS  Google Scholar 

  9. Lopes IA, Santos J Jr, Da Silva DC, Da Silva LJS, Barros AK, Villa-Vélez HA, Santana AA (2017) Characterization of pectin biofilms with the addition of babassu mesocarp and whey protein concentrate. Ame J Mat Scie 3:64–70. https://doi.org/10.5923/j.materials.20170703.04

    Article  Google Scholar 

  10. Vieira AP, Santana SAA, Bezerra CWB, Silva HAS, Chaves JAP, Melo JCP, Filho ECS, Airoldi C (2011) Removal of textile dyes from aqueous solution by babassu coconut epicarp (Orbignya speciosa). Chem Eng J 173:334–340. https://doi.org/10.1016/j.cej.2011.07.043

    Article  CAS  Google Scholar 

  11. SCS R, FAS DM, De Carvalho LH, Alves TS, Folkersma R, RSDRM A, Oliveira AD, Barbosa R (2021) Preparation and characterization of polymeric films based on PLA, PBAT and corn starch and babassu mesocarp starch by flat extrusion. Mat Res Exp 8:035305. https://doi.org/10.1088/2053-1591/abeaca

    Article  CAS  Google Scholar 

  12. Lira RKS, Zardini RT, De Carvalho MCC, Wojcieszak R, Leite SGF, Itabaiana I Jr (2021) Agroindustrial wastes as a support for the immobilization of lipase from thermomyces lanuginosus: synthesis of hexyl laurate. Biomolecules 11:1–15. https://doi.org/10.3390/biom11030445

    Article  CAS  Google Scholar 

  13. Nunes MABS, Marinho VAD, Falcão GAM, Canedo EL, Bardi MAG, Carvalho LH (2018) Rheological, mechanical and morphological properties of poly(butylene adipate-co-terephthalate)/thermoplastic starch blends and its biocomposite with babassu mesocarp. Pol Test 70:281–288. https://doi.org/10.1016/j.polymertesting.2018.07.009

    Article  CAS  Google Scholar 

  14. Woiciechowski AL, Dalmas Neto CJ, Vandenberghe LPS, De Carvalho Neto DP, Sydney ACN, Letti LAJ, Karp SG, Torres LAZ, Soccol CR (2020) Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance – conventional processing and recent advances. Bioresour Technol 304:122848. https://doi.org/10.1016/j.biortech.2020.122848

    Article  CAS  Google Scholar 

  15. Florindo C, Lima F, Ribeiro BD, Marrucho IM (2019) Deep eutectic solvents: overcoming 21st century challenges. Cur Op Gre Sust Chem 18:31–36. https://doi.org/10.1016/j.cogsc.2018.12.003

    Article  Google Scholar 

  16. Li P, Zhang Z, Zhang X, Li K, Jin Y, Wu W (2023) DES: their effect on lignin and recycling performance. RSC Adv 13:3241–3254. https://doi.org/10.1039/d2ra06033g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zulkefli S, Abdulmalek E, Abdul Rahman MB (2017) Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Rene Ene 107:36–41. https://doi.org/10.1016/j.renene.2017.01.037

    Article  CAS  Google Scholar 

  18. Liu Y, Chen W, Xia Q, Guo B, Wang Q, Liu S, Liu Y, Li J, Yu H (2017) Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem 10:1692–1700. https://doi.org/10.1002/cssc.201601795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amoroso R, Hollmann F, Maccallini C (2021) Choline chloride-based des as solvents/catalysts/chemical donors in pharmaceutical synthesis. Molecules 26:6286. https://doi.org/10.3390/molecules26206286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vinci G, Maddaloni L, Prencipe SA, Orlandini E, Sambucci M (2023) Simple and reliable eco-extraction of bioactive compounds from dark chocolate by deep eutectic solvents. A sustainable study. Int J Food Sci Technol 58:4051–4065. https://doi.org/10.1111/ijfs.16315

    Article  CAS  Google Scholar 

  21. Park CW, Gwon J, Han SY et al (2023) Effect of deep eutectic solvent pretreatment on defibrillation efficiency and characteristics of lignocellulose nanofibril. Wood Sci Technol 57:197–209. https://doi.org/10.1007/s00226-022-01444-4

    Article  CAS  Google Scholar 

  22. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  23. Mjalli FS, Naser J (2015) Viscosity model for choline chloride-based deep eutectic solvents. Asia-Pacific J Chem Eng 10:273–281. https://doi.org/10.1002/apj.1873

    Article  CAS  Google Scholar 

  24. Omar KA, Sadeghi R (2022) Physicochemical properties of deep eutectic solvents: a review. J Mol Liq 360:119524. https://doi.org/10.1016/j.molliq.2022.119524

    Article  CAS  Google Scholar 

  25. Sánchez PB, González B, Salgado J, José Parajó J, Domínguez Á (2019) Physical properties of seven deep eutectic solvents based on L-proline or betaine. J of Chemical Thermodynamics 131:517–523. https://doi.org/10.1016/j.jct.2018.12.017

    Article  CAS  Google Scholar 

  26. Janicka P, Przyjazny A, Boczkaj G (2021) Novel “acid tuned” deep eutectic solvents based on protonated L-proline. J Mol Liq 333:115965. https://doi.org/10.1016/j.molliq.2021.115965

    Article  CAS  Google Scholar 

  27. PVA P, Shiwaku IA, Maximo GJ, EAC B (2021) Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chem 352:129346. https://doi.org/10.1016/j.foodchem.2021.129346

    Article  CAS  Google Scholar 

  28. El Achkar T, Greige-Gerges H, Fourmentin S (2021) Basics and properties of deep eutectic solvents: a review. Env Chem Lett 19:3397–3408. https://doi.org/10.1007/s10311-021-01225-8

    Article  CAS  Google Scholar 

  29. Ma CY, Peng XP, Sun S, Wen JL, Yuan TQ (2021) Short-time deep eutectic solvents pretreatment enhanced production of fermentable sugars and tailored lignin nanoparticles from abaca. Int J Bio Macromol 192:417–425. https://doi.org/10.1016/j.ijbiomac.2021.09.140

    Article  CAS  Google Scholar 

  30. Li T, Lyu G, Liu Y, Lou R, Lucia LA, Yang G, Chen J, Saeed HAM (2017) Deep eutectic solvents (DESs) for the isolation of willow lignin (salix matsudana cv. zhuliu). Int J Mol Sci 18:2266. https://doi.org/10.3390/ijms18112266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tian D, Guo Y, Hu J, Yang G, Zhang J, Luo L, Xiao Y, Deng S, Deng O, Zhou W, Shen F (2020) Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int J Bio Macromol 142:288–297. https://doi.org/10.1016/j.ijbiomac.2019.09.100

    Article  CAS  Google Scholar 

  32. Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy KK, Wolcott M, Zhang X (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141. https://doi.org/10.1039/c6gc01007e

    Article  CAS  Google Scholar 

  33. Kohli K, Katuwal S, Biswas A, Sharma BK (2020) Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresour Technol 303:122897. https://doi.org/10.1016/j.biortech.2020.122897

    Article  CAS  PubMed  Google Scholar 

  34. Provost V, Dumarcay S, Ziegler-Devin I, Boltoeva M, Trébouet D, Villain-Gambier M (2022) Deep eutectic solvent pretreatment of biomass: influence of hydrogen bond donor and temperature on lignin extraction with high β-O-4 content. Bioresour Technol 349:126837. https://doi.org/10.1016/j.biortech.2022.126837

    Article  CAS  PubMed  Google Scholar 

  35. Zhang CW, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5. https://doi.org/10.1016/j.biortech.2016.07.026

    Article  CAS  PubMed  Google Scholar 

  36. Jose D, Tawai A, Divakaran D, Bhattacharyya D, Venkatachalam P, Tantayotai P, Sriariyanun M (2023) Integration of deep eutectic solvent in biorefining process of lignocellulosic biomass valorization. Bioresour Technol Rep 21:101365. https://doi.org/10.1016/j.biteb.2023.101365

    Article  CAS  Google Scholar 

  37. Xu H, Peng J, Kong Y, Liu Y, Su Z, Li B, Song X, Liu S, Tian W (2020) Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: a review. Bioresour Technol 310:123416. https://doi.org/10.1016/j.biortech.2020.123416

    Article  CAS  PubMed  Google Scholar 

  38. Guo Z, Ling Z, Wang C, Zhang X, Xu F (2018) Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue. Bioresour Technol 265:334–339. https://doi.org/10.1016/j.biortech.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  39. Procentese A, Raganati F, Olivieri G, Russo ME, Rehmann L, Marzocchella A (2018) Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnol Biof 11:37. https://doi.org/10.1186/s13068-018-1034-y

    Article  CAS  Google Scholar 

  40. Woo KS, Kim HY, Hwang IG, Lee SH, Jeong HS (2015) Characteristics of the thermal degradation of glucose and maltose solutions. Prev Nutr Food Sci 20:102–109. https://doi.org/10.3746/pnf.2015.20.2.102

    Article  PubMed  PubMed Central  Google Scholar 

  41. Morais ES, Lopes AMC, Freire MG, Freire CSR, Silvestre AJD (2021) Unveiling modifications of biomass polysaccharides during thermal treatment in cholinium chloride : lactic acid deep eutectic solvent. ChemSusChem 14:686–698. https://doi.org/10.1002/cssc.202002301

    Article  CAS  PubMed  Google Scholar 

  42. Skulcova A, Majova V, Kohutova M, Grosik M, Sima J, Jablonsky M (2017) UV/Vis spectrometry as a quantification tool for lignin solubilized in deep eutectic solvents. Bioresources 12:6713–6722. https://doi.org/10.15376/biores.12.3.6713-6722

    Article  CAS  Google Scholar 

  43. Giglio C, Yang Y, Kilmartin P (2023) Analysis of phenolics in New Zealand Pinot noir wines using UV-visible spectroscopy and chemometrics. J Food Composition Anal 117:105106. https://doi.org/10.1016/j.jfca.2022.105106

    Article  CAS  Google Scholar 

  44. Saha S, Singh J, Paul A, Sarkar R, Khan Z, Banerjee K (2021) Anthocyanin profiling using UV-vis spectroscopy and liquid chromatography mass spectrometry. J AOAC Int 103:23–39. https://doi.org/10.5740/jaoacint.19-0201

    Article  Google Scholar 

  45. Abdalla Filho AL, Dineshkumar D, Barrea M, McManus C, Vasconcelos VR, Abdalla AL, Louvandini H (2017) Performance, metabolic variables and enteric methane production of Santa Inês hair lambs fed Orbignya phalerata and Combretum leprosum. J Anim Physiol Anim Nutr 101:457–465. https://doi.org/10.1111/jpn.12561

    Article  CAS  Google Scholar 

  46. Zhang X, Zhu P, Li Q, Xia H (2022) Recent advances in the catalytic conversion of biomass to furfural in deep eutectic solvents. Front Chem 10:911674. https://doi.org/10.3389/fchem.2022.911674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Runasen A, Lappalainen K, Kärkkäinen J, Lassi U (2021) Furfural and 5-Hydroxymethylfurfural production from sugar mixture using deep eutectic solvent/MIBK system. Chem Open 10:1004. https://doi.org/10.1002/open.202100163

    Article  CAS  Google Scholar 

  48. Lee CB, Wu TY, Cheng CK, Siow LF, Chew IM (2021) Nonsevere furfural production using ultrasonicated oil palm fronds and aqueous choline chloride-oxalic acid. Ind Crops Prod 166:113397. https://doi.org/10.1016/j.indcrop.2021.113397

    Article  CAS  Google Scholar 

  49. Morais ES, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD (2020) enhanced conversion of xylan into furfural using acidic deep eutectic solvents with dual solvent and catalyst behavior. ChemSusChem 13:784. https://doi.org/10.1002/cssc.201902848

    Article  CAS  PubMed  Google Scholar 

  50. Arora S, Gupta N, Singh V (2021) pH-controlled efficient conversion of hemicellulose to furfural using choline-based deep eutectic solvents as catalysts. ChemSusChem 14:3953. https://doi.org/10.1002/cssc.202101130

    Article  CAS  PubMed  Google Scholar 

  51. Chen Z, Wang Y, Cheng H, Zhou H (2022) Hemicellulose degradation: an overlooked issue in acidic deep eutectic solvents pretreatment of lignocellulosic biomass. Ind Crops Prod. 187:115335. https://doi.org/10.1016/j.indcrop.2022.115335

    Article  CAS  Google Scholar 

  52. Ji Q, Yu X, Yagoub AEGA, Chen L, Zhou C (2020) Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind Crops Prod 149:112357. https://doi.org/10.1016/j.indcrop.2020.112357

    Article  CAS  Google Scholar 

  53. Ghosh A, Santos AMS, Cunha JR, Dasgupta A, Fujisawa K, Ferreira OP, Lobo AO, Terrones M, Terrones H, Viana BC (2018) CO2 Sensing by in-situ Raman spectroscopy using activated carbon generated from mesocarp of babassu coconut. Vibr Spect 98:111–118. https://doi.org/10.1016/j.vibspec.2018.07.014

    Article  CAS  Google Scholar 

  54. Lee KM, Quek JD, Tey WY, Lim S, Kang HS, Quen LK, Mahmood WAW, Jamaludin SIS, Teng KH, Khoo KS (2022) Biomass valorization by integrating ultrasonication and deep eutectic solvents: Delignification, cellulose digestibility and solvent reuse. Biochem Eng J 187:108587. https://doi.org/10.1016/j.bej.2022.108587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidade Federal do Rio de Janeiro (UFRJ), BIOSE lab, and the School of Chemistry of UFRJ.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001 and FAPERJ GRANT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivaldo Itabaiana Jr.

Ethics declarations

Competing Interests

Authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.58 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.S., Ribeiro, B.D. & Itabaiana, I. Investigation of Babassu Mesocarp Dissolution in the Presence of Deep Eutectic Solvents. Bioenerg. Res. 16, 2081–2092 (2023). https://doi.org/10.1007/s12155-023-10692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10692-6

Keywords

Navigation