Skip to main content
Log in

Bioprospecting for Lipid Production of Eleven Microalgae Strains for Sustainable Biofuel Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The aim of this work was to measure the growth rate, biomass production, proximate composition, and fatty acid content of eleven microalgae strains to evaluate their potential for biofuel production. The growth rate (p < 0.05), total dry weight (p < 0.05), organic dry weight (p < 0.05), ash content (p < 0.05), and biomass productivity (p < 0.05) differed among eleven microalgae strains. The proximate composition differed (p < 0.05) among the eleven microalgae strains. The lipid contents were higher in Cymbella sp. (strain 2) (42.46 ± 1.06%) (p < 0.05). The carbohydrate content was higher (p < 0.05) in Aphanocapsa marina (42.40 ± 1.18 %). The protein content was significantly higher (p < 0.05) in Chlamydomonas mexicana (52.83 ± 0.60%). The contents of saturated (SFAs) (p < 0.05), monounsaturated (MUFAs), and polyunsaturated (PUFAs) (p < 0.05) fatty acids among the eleven microalgae strains were different. The most important indicators of biodiesel properties are the cetane number (CN), iodine value (IV), and saponification value (SV). It was concluded that Chlorella vulgaris was an adequate strain to be used in the production of biodiesel due to their high amount of palmitic acid, oleic acid, and alpha-linolenic acid, by high values of IV (147.27 g I2/100 g), SV (210.96 mg KOH/g), and CN (48.88). The diatom Cymbella sp. is a promising strain for biodiesel production due to its high values of lipid content (42.46%), lipid productivity (1.24 g/L/day), growth rate (0.67 divisions/day), and IV (197.93 g I2/100 g), and by the lowest values of generation time (35.60 h) and SV (208.85 mg KOH/g). Another promising strain for biodiesel production is Porphyridium cruentum due to its high values of biomass productivity (0.038 g/L/day), lipid productivity (0.80 g/L/day), CN (45.60), and IV (220.15 g I2/100 g), and by the low generation time and SV (199.25 mg KOH/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Christi Y (2007) Biodiesel from microalgae. Biotech Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  Google Scholar 

  2. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Ener Rev 12:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  3. Andersen RA (2005) Algal culturing techniques. Elsevier, Amsterdam

    Google Scholar 

  4. Richmond A (2005) Handbook of microalgal mass culture: biotechnology and applied phycology. Blackwell Science Publishing, United Kingdom, p 566

    Google Scholar 

  5. Vasudevan V, Stratton RW, Pearlson MN, Jersey GR, Beyene AG, Weissman JC, Rubino M, Hileman JI (2012) Environmental performance of algal biofuel technology options. Environ Sci Tech 46:2451–2459. https://doi.org/10.1021/es2026399

    Article  CAS  Google Scholar 

  6. Chew KW, JY Yap, PL Show, NH Suan, JC Juan, TC Ling, DJ Lee, JS (2017) Chang, Microalgae bio refinery: high value products perspectives. Bioresour Technol 229:53-62. https://doi.org/10.1016/j.biortech.2017.01.006

  7. Moreno-Garcia L, Adjallé K, Barnabé S, Raghavan GSV (2017) Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew. Sust Ener Rev 76:493–506. https://doi.org/10.1016/j.rser.2017.03.024

    Article  Google Scholar 

  8. Vanthoor-Koopmans M, Wijffel RH, Barbosa MJ, Eppink MH (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149. https://doi.org/10.1016/j.biortech.2012.10.135

    Article  CAS  PubMed  Google Scholar 

  9. Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based bio refinery–from biofuels to natural products. Bioresour Technol 135:166–174. https://doi.org/10.1016/j.biortech.2012.10.099

    Article  CAS  PubMed  Google Scholar 

  10. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant J 4:621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

    Article  CAS  Google Scholar 

  11. Vidyashankar S, VenuGopal KS, Swarnalatha GV, Kavitha MD, Chauhan VS, Ravi R, Kumar-Bansai A, Singh R, Pande A, Aswathanarayana R, Sarada R (2015) Characterization of fatty acids and hydrocarbons of chlorophycean microalgae towards their use as biofuel source. Biomass Bioenergy 77:75–91. https://doi.org/10.1016/j.biombioe.2015.03.001

    Article  CAS  Google Scholar 

  12. Moheimani R, McHenry P, de Boer K, Bahri A (2015) Biomass and biofuels from microalgae advances in engineering and biology. Springer, Cham Switzerland, p 372

    Book  Google Scholar 

  13. Patil V, Tan KQ, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. J Ind Microbiol Biot 36:269–271. https://doi.org/10.3390/ijms9071188

    Article  CAS  Google Scholar 

  14. Hamed I (2016) The evolution and versatility of microalgal biotechnology: a review. Compr Rev Food Sci Food Saf 15:1105–1123. https://doi.org/10.1111/1541-4337.12227

    Article  Google Scholar 

  15. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  16. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acids alkyl esters. Fuel Processing Technol 86:1059–1070. https://doi.org/10.1016/j.fuproc.2004.11.002

    Article  CAS  Google Scholar 

  17. Knothe G, Matheaus AC, Ryan TW (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82:971–975. https://doi.org/10.1016/S0016-2361(02)00382-4

    Article  CAS  Google Scholar 

  18. Conley SP (2006) Biodiesel quality: is all biodiesel created equal? BioEnergy 12:1–4

    Google Scholar 

  19. Jiménez-Valera S, Sánchez-Saavedra MP (2016) Growth and fatty acid profiles of microalgae species isolated from the Baja California Peninsula, México. Lat Amer J Aquat Res 44:689–702. https://doi.org/10.3856/vol44-issue4-fulltext-4

    Article  Google Scholar 

  20. Nascimento LA, Marques SSI, Cabanelas ITD, Pereira SA, Druzian JI, de Souza CO, Vilch DV, Carvalho GC (2013) Nascimento, Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioener Res 6:1–13. https://doi.org/10.1007/s12155-012-9222-2

    Article  CAS  Google Scholar 

  21. Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 31:87–93. https://doi.org/10.1007/s10811-008-9392-7

    Article  CAS  Google Scholar 

  22. Hempel N, Petrick I, Behrendt F (2012) Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics for suitability for biodiesel production. J Appl Phycol 24:1407–1418. https://doi.org/10.1007/s10811-012-9795-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fawzy MA, Alharthi S (2021) Use of response surface methodology in optimization of biomass, lipid productivity and fatty acid profiles of marine microalga Dunaliella parva for biodiesel production. Environ Technol Innov 22:101485. https://doi.org/10.1016/j.eti.2021.101485

    Article  CAS  Google Scholar 

  24. Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102:57–70. https://doi.org/10.1016/j.biortech.2010.06.077

    Article  CAS  PubMed  Google Scholar 

  25. Cobos M, Paredes J, Maddox J, Vargas-Arana G, Flores L, Aguilar C, Malapara JL, Castro J (2017) Isolation and characterization of native microalgae from the Peruvian Amazon with potential for biodiesel production. Energies 10:224. https://doi.org/10.3390/en10020224

    Article  CAS  Google Scholar 

  26. Guillard RLL, Rhyter JH (1962) Studies on marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239. https://doi.org/10.1139/m62-029

    Article  CAS  PubMed  Google Scholar 

  27. Fogg GE, Thake BJ (1987) Algal cultures and phytoplankton ecology. University of Wisconsin Press, London, p 269

    Google Scholar 

  28. Lowry OH, Rosebrugh HL, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  29. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  30. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  31. Folch J, Lee M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 22:477–509

    Google Scholar 

  32. Metcalfe LD, Schmitz AA, Pelk RJ (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 574:514–515. https://doi.org/10.1021/ac60235a044

    Article  Google Scholar 

  33. Osundeko O, Davis H, Pirtman JK (2014) Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass Bioenergy 56:284–294. https://doi.org/10.1016/j.biombioe.2013.05.027

    Article  CAS  Google Scholar 

  34. Islami RH, Assareh RJ (2019) Effect of different iron concentrations on growth, lipid accumulation, and fatty acid profile for biodiesel production from Tetradesmus obliquus. J Appl Phycol 31:3421–3432. https://doi.org/10.1007/s10811-019-01843-4

    Article  CAS  Google Scholar 

  35. Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, p 290

    Google Scholar 

  36. Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, New York, p 535

    Book  Google Scholar 

  37. Dubinsky Z, Matsukawa R, Kurube I (1995) Photobiological aspects of algal mass culture. J Mar Biotechnol 2:61–65

    Google Scholar 

  38. Matos-Moura A, Bezerra-Neto E, Koening ML, Leca EE (2007) Chemical composition of three microalgae species for possible use in mariculture. Braz Arch Biol Technol 50(3):461–467

    Article  Google Scholar 

  39. Saros JE, Fritz SC (2000) Changes in the growth rates of saline-lake diatoms in response to variation in salinity, brine type and nitrogen form. J Plankton Res 22:1071–1083. https://doi.org/10.1093/plankt/22.6.1071

    Article  Google Scholar 

  40. Steinrücken P, Erga SR, Mjøs SA, Kleivdal H, Prestegard SK (2017) Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies. Algal Res 26:392–401. https://doi.org/10.1016/j.algal.2017.07.030

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lourenço SO, Barbarino E, Mancini-Filho J, Schinke KP, Aidar E (2002) Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia 41:158–168. https://doi.org/10.2216/i0031-8884-41-2-158.1

    Article  Google Scholar 

  42. Rodolfi L, Chin-Zintteli G, Bondi N, Tredici M (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112. https://doi.org/10.1002/bit.22033

    Article  CAS  PubMed  Google Scholar 

  43. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochem 67:696–701. https://doi.org/10.1016/j.phytochem.2006.01.010

    Article  CAS  Google Scholar 

  44. Scott SA, Davey MP, Dennis SJ, Horst I, Howe CJ, Lean-Smith JD, Dmith AG (2010) Biodiesel from microalgae: challenges and prospects. Curr Opin Bitech 21:277–286. https://doi.org/10.1016/j.copbio.2010.03.005

    Article  CAS  Google Scholar 

  45. Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2014) Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock. Environ Technol 35(17):2244–2225. https://doi.org/10.1080/09593330.2014.900117

    Article  CAS  PubMed  Google Scholar 

  46. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioener Res 1:20–43. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  47. Ruangsomboon S, Ganmanee M, Choochote S (2013) Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus KMITL. J Appl Phycol 25:867–874. https://doi.org/10.1007/s10811-012-9956-4

    Article  CAS  Google Scholar 

  48. Sorigué D, Léger B, Cuiné S, Morales P, Mirabella B, Guédeney G, Li-Beisson Y, Jetter R, Peltier G, Beisson F (2016) Microalgae synthesize hydrocarbons from long chain fatty acids via a light-dependent pathway. Plant Physiol 171:2393–2405. https://doi.org/10.1104/pp.16.00462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ulusoy EHB, Menegazzo ML, Sandefur H, Gottberg E, Vaden J, Asgharpour M, Hestekin CN, Hestekin JA (2020) Porphyridium cruentum grown in ultra-filtered swine wastewater and its effects on microalgae growth productivity and fatty acid composition. Energies 13(12):3194. https://doi.org/10.3390/en13123194

    Article  CAS  Google Scholar 

  50. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1):S75–S77. https://doi.org/10.1016/j.biortech.2009.03.058

    Article  CAS  PubMed  Google Scholar 

  51. Arutselvan C, Narchonai G, Pugazhendhi A, Lewis OF, Thajuddin N (2021) Evaluation of microalgal strains and microalgal consortium for higher lipid productivity and rich fatty acid profile towards sustainable biodiesel production. Bioresour Technol 339:125524. https://doi.org/10.1016/j.biortech.2021.125524

    Article  CAS  PubMed  Google Scholar 

  52. Knothe G, Dunn RO, Bagby MO (1997) Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels. In: ACS symposium series, Washington, DC. Am Chem Soc 666:172–208. https://doi.org/10.1021/bk-1997-0666.ch010

    Article  CAS  Google Scholar 

  53. Nautiyal P, Subramanian KA, Dastidar MG (2014) Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction-transesterification process. Fuel 135:228–234. https://doi.org/10.1016/j.fuel.2014.06.063

    Article  CAS  Google Scholar 

  54. Kwangdinata R, Raya I, Zakir M (2014) Production of biodiesel from lipid of Porphyridium cruentum through ultrasonic method. Int Sch Res Notices. https://doi.org/10.1155/2014/107278

Download references

Funding

This work was funded by “Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE),” the Fund for Scientific Research and Technological Development of CICESE Call 2015 (Project: 623801).

Author information

Authors and Affiliations

Authors

Contributions

F.Y.C.O.: implementation of the experiments and data processing. M.P.S.S.: supervision of experiments and data processing, wrote the manuscript, and responsible for financial support

Corresponding author

Correspondence to M. P. Sánchez-Saavedra.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

All authors read and give consent for publication of the final manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Saavedra, M.P., Castro-Ochoa, F.Y. Bioprospecting for Lipid Production of Eleven Microalgae Strains for Sustainable Biofuel Production. Bioenerg. Res. 17, 1118–1132 (2024). https://doi.org/10.1007/s12155-023-10685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10685-5

Keywords

Navigation