Skip to main content

Advertisement

Log in

Bioenergy Devices: Energy and Emissions Performance for the Residential and Industrial Sectors in Mexico

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biomass represents 10% of the total energy use and 55% of all renewable energy in Mexico. It is a key energy source to help Mexico achieve a low-carbon development path to comply with the strict climate mitigation targets needed to avoid catastrophic consequences. However, a major limitation in the construction of reliable future mitigation scenarios is the lack of information regarding in-country greenhouse emission factors associated to both traditional and modern bioenergy devices. This paper aims to close this gap, providing detailed estimates of energy and emission factors from bioenergy devices in the Mexican residential and industrial sectors. In particular, four energy tasks, comprising 67% of current bioenergy use in the country, were selected (charcoal production, biomass drying, space heating, and cooking) with a total of nine bioenergy devices: traditional earth mound charcoal kiln, flash dryer, heater, five types of cookstoves, and an open fire. The thermal efficiency ranged from 10 ± 1 to 26 ± 5% for the cooking devices, 95 ± 1 to 96 ± 1% for the space heater, 34 ± 8% for the charcoal kiln, and 10 ± 2% for the biomass dryer. The modified combustion efficiency was calculated to be 88 ± 1% for the earth mound charcoal kiln, 96–98% for the cookstove, and 93–98% for the space heater. The products of incomplete combustion ranged from 21 ± 6 to 48 ± 12 g for the cooking devices and 58 ± 18 to 340 ± 107 g for the space heaters. CO2 emission factors ranged from 102 ± 2 to 119 ± 2 g/MJ for the local biomass stoves. Relative to other pollutants, the CO emissions per energy unit were the highest, ranging from 1193 ± 184 mg/MJ for the space heater to 18,121 ± 1232 mg/MJ for the earth mound charcoal kiln. The total global warming potential was estimated to be 35 ± 2 gCO2e/MJ for the ONIL stove (modified) and 158 ± 4 gCO2e/MJ for the earth mound charcoal kiln. The estimates presented in this study represent an important contribution to Mexico’s inventories in terms of energy performance and emissions parameters of four energy tasks in the industrial and residential sectors. This information will be a baseline to estimate carbon footprint, life cycle assessments, GHG emissions scenarios, and mitigation strategies for local and regional Mexican conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. REN21 (2017) Renewables 2020, Global Status Report, París. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf. Accessed 11 Mar 2021

  2. Goldemberg J, Coelho ST (2004) Renewable energy—traditional biomass vs. modern biomass. Energy Policy 32(6):711–714. https://doi.org/10.1016/S0301-4215(02)00340-3

    Article  Google Scholar 

  3. Legros G, Havet I, Bruce N, Bonjour S, Rijal K, Takada M, Dora C (2009) The energy access situation in developing countries: a review focusing on the least developed countries and Sub-Saharan Africa. World Health Organization. 142. https://cleancookingalliance.org/wp-content/uploads/2021/07/32-1.pdf. Accessed 11 Mar 2021

  4. Riahi K, Dentener F, Gielen D, Grubler A, Jewell J, Klimont Z, ... Wilson C (2012) Energy pathways for sustainable development, in Global Energy Assessment (GEA), G Morgan, pp. 1205–1306. http://pure.iiasa.ac.at/10065. Accessed 11 Mar 2021

  5. Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S, Prüss-Ustün A, Smith KR (2013) Solid fuel use for household cooking: Country and regional estimates for 1980–2010. Environ Health Perspect. 121(7):784–790. https://doi.org/10.1289/ehp.1205987

    Article  PubMed  PubMed Central  Google Scholar 

  6. Masera OR, Bailis R, Drigo R, Ghilardi A, Ruiz-Mercado I (2015) Environmental burden of traditional bioenergy use. Annu Rev Environ Resour 40:121–150. https://doi.org/10.1146/annurev-environ-102014-021318

    Article  Google Scholar 

  7. Shen G, Du W, Luo Z, Li Y, Cai G, Lu C, Qiu Y, Chen Y, Cheng H, Tao Shu (2020) Fugitive Emissions of CO and PM2.5 from Indoor Biomass Burning in Chimney Stoves Based on a Newly Developed Carbon Balance Approach. Environ Sci Technol Lett 7(3):128–134. https://doi.org/10.1021/acs.estlett.0c00095

    Article  CAS  Google Scholar 

  8. Johnson M et al (2021) Modeling approaches and performance for estimating personal exposure to household air pollution: A case study in Kenya. Indoor Air 31(5):1441–1457

    Article  CAS  PubMed  Google Scholar 

  9. Bailis R, Drigo R, Ghilardi A, Masera O (2015) The carbon footprint of traditional woodfuels. Nat. Clim. Chang.5(3):266–272, 2015. https://www.nature.com/articles/nclimate2491. Accessed 13 Mar 2021

  10. Van Loo S, Koppejan J (2008) The handbook of biomass combustion and cofiring the handbook of biomass combustion and co-firing edited by Sjaak van Loo and Jaap Koppejan. London, Sterling, VA: Earthscan, publishing for a sustainable future

  11. IPCC (2001) Climate Change 2001. Mitigation. Intergovernmen- tal Panel on Climate Change, Cambridge, New York, pp. x, 752. https://www.ipcc.ch/report/ar3/wg3/. Accessed 19 March 2021.

  12. Tauro R, Serrano-Medrano M, Masera O (2018) Solid biofuels in Mexico: a sustainable alternative to satisfy the increasing demand for heat and power. Clean Technol Environ Policy 20(7):1527–1539. https://doi.org/10.1007/s10098-018-1529-z

    Article  Google Scholar 

  13. García-Bustamanete C et al (2015) Sustainable bioenergy options for Mexico: GHG mitigation and costs. Renew Sustain Energy Rev 43:545–552

    Article  Google Scholar 

  14. Ministry of Environment and Natural Resources, and National Institute of Ecology and Climate Change (2018) Ministry of Environment and Natural Resources, “National Inventory of Gases and Greenhouse Compounds Emissions 1990–2015 in Mexico,” Mexico City. https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/85321794_Mexico-NC6-BUR2-1-NIR_INEGYCEI%201990%20a%202015%20A.pdf Accessed 05 March 2021

  15. Mexican Energy Ministry (2018) National energy balance. https://www.gob.mx/cms/uploads/attachment/file/528054/Balance_Nacional_de_Energ_a_2018.pdf Accessed 19 March 2021

  16. Masera O (2006) Bioenergy in Mexico. A catalyst for sustainable development. https://rembio.org.mx/cuadernos-tematicos/. Accessed 15 Mar 2021

  17. Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B (2012) A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev 16(5):3065–3083. https://doi.org/10.1016/j.rser.2012.02.054

    Article  CAS  Google Scholar 

  18. Koçar G, Civaş N (2013) An overview of biofuels from energy crops: current status and future prospects. Renew Sustain Energy Rev 28:900–916. https://doi.org/10.1016/j.rser.2013.08.022

    Article  CAS  Google Scholar 

  19. Hirasawa T, Ookawa T, Kawai S, Funada R, Kajita S (2013) Production technology for bioenergy crops and trees. Elsevier. https://doi.org/10.1016/B978-0-12-404609-2.00004-0

  20. Ministry of the Environment and Natural Resources (2013) National climate change strategy: vision to 10–20–40. https://www.gob.mx/cms/uploads/attachment/file/41978/Estrategia-Nacional-Cambio-Climatico-2013.pdf

  21. Padilla-Barrera Z, Torres-Jardón R, Gerardo Ruiz-Suarez L, Castro T, Peralta O, Saavedra M, Masera O, Tan Molina L, Zavala M (2019) Determination of emission factors for climate forcers and air pollutants from improved wood-burning cookstoves in Mexico. Energy Sustain. Dev. 50:61–68. https://doi.org/10.1016/j.esd.2019.02.004

    Article  Google Scholar 

  22. Roden CA, Bond TC, Conway S, Pinel ABO, MacCarty N, Still D (2009) Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos Environ 43(6):1170–1181. https://doi.org/10.1016/j.atmosenv.2008.05.041

    Article  CAS  Google Scholar 

  23. Johnson M, Edwards R, Frenk CA, Masera O (2008) In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmos Environ 42(6):1206–1222

    Article  CAS  Google Scholar 

  24. Mexican Energy Ministry (2017) Solid biofuel technology roadmap, Mexico. https://www.gob.mx/cms/uploads/attachment/file/306074/Mapa_de_Ruta_Tecnologica_BCS_SENER_220218-Red1.pdf. Accessed 17 Mar 2021

  25. Islas J, Manzini F, Masera O (2007) A prospective study of bioenergy use in Mexico. Energy 32(12):2306–2320. https://doi.org/10.1016/j.energy.2007.07.012

    Article  CAS  Google Scholar 

  26. Gonzalez-Salazar MA et al (2014) Methodology for biomass energy potential estimation: projections of future potential in Colombia. Renew Energy 69:488–505. https://doi.org/10.1016/j.renene.2014.03.056

    Article  Google Scholar 

  27. Kammen DM, Lew DJ (2005) Renewable and appropriate energy laboratory report review of technologies for the production and use of charcoal. Renew Appropr Energy Lab Rep. 1–19. http://rael.berkeley.edu/old_drupal/sites/default/files/old-site-files/2005/Kammen-Lew-Charcoal-2005.pdf. Accesed 22 March 2021

  28. Mwampamba TH, Owen M, Pigaht M (2013) Opportunities, challenges and way forward for the charcoal briquette industry in Sub-Saharan Africa. Energy Sustain Dev. 17(2): 158–170. http://rael.berkeley.edu/old_drupal/sites/default/files/old-site-files/2005/Kammen-Lew-Charcoal-2005.pdf. Accessed 28 Mar 2021

  29. Srinivasakannan C, Balasubramaniam N (2006) Drying of rubber wood sawdust using tray dryer. Part Sci Technol 24(4):427–439. https://doi.org/10.1080/02726350600934689

    Article  CAS  Google Scholar 

  30. Ruiz-Mercado I, Masera O, Zamora H, Smith KR (2011) Adoption and sustained use of improved cookstoves. Energy Policy 39(12):7557–7566. https://doi.org/10.1016/j.enpol.2011.03.028

    Article  CAS  Google Scholar 

  31. Ruiz-Mercado I, Masera O (2015) Patterns of stove use in the context of fuel–device stacking: rationale and implications. Ecohealth. 12(1):42–56. https://link.springer.com/article/https://doi.org/10.1007/s10393-015-1009-4

  32. EN 14785:2006 (2007) Residential space heating appliances fired by wood pellets. Requirements and test methods. Madrid. https://www.aenor.com/normas-y-libros/buscador-de-normas/une?c=N0038408. Accessed 23 March 2021

  33. Kumar M, Kumar S, Tyagi SK (2013) Design, development and technological advancement in the biomass cookstoves: a review. Renew Sustain Energy Rev 26:265–285. https://doi.org/10.1016/j.rser.2013.05.010

    Article  Google Scholar 

  34. Ruiz-García VM, Edwards RD, Ghasemian M, Berrueta VM, Princevac M, Vázquez JC, ... Masera OR (2018) Fugitive emissions and health Implications of plancha-type stoves. Environ Sci Technol 52 (18): 10848–10855

  35. ISO 19867–1:2018 (2018) International Standar solutions—harmonized laboratory test protocols—Part 1: standard test sequence for emissions and performance, safety and durability. Available online: https://www.iso.org/standard/66519.html. Accessed on 18 May 2021

  36. UNE-EN ISO 18134–1:2015 (2015) Solid biofuels. Determination of moisture content. Oven dry method. Part 1: Total moisture. 2016. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0056325. Accessed 18 September 2021

  37. UNE-EN ISO 18125–1:2017 (2017) Solid biofuels. Determination of calorific value. 71, 2018. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0046857. Accessed 18 September 2021

  38. Ruiz V, Masera O (2018) Estimating kitchen PM 2.5 and CO concentrations out of stove emissions : the case of mexican plancha-type stoves. Tech. rep. Laboratory of Innovation and Evaluation of Biomass Stoves, National Autonomous University of Mexico. https://www.cleancookingalliance.org/binary-data/RESOURCE/file/000/000/543-1.pdfyy

  39. Jetter J, Zhao Y, Smith KR, Khan B, Yelverton T, DeCarlo P, Hays MD (2012) Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ Sci Technol 46(19):10827–10834. https://doi.org/10.1021/es301693f

    Article  CAS  PubMed  Google Scholar 

  40. Roden CA, Bond TC, Conway S, Pinel ABO (2006) Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ Sci Technol 40(21):6750–6757

    Article  CAS  PubMed  Google Scholar 

  41. Johnson M, Edwards R, Ghilardi A, Berrueta V, Gillen D, Frenk CA, Masera O (2009) Quantification of carbon savings from improved biomass cookstove projects. Environ Sci Technol 43(7):2456–2462. https://doi.org/10.1021/es801564u

    Article  CAS  PubMed  Google Scholar 

  42. IPCC (2015) Climate Change 2014: Synthesis report. First Publication. Geneva, Switzerland. Geneva, Switzerland. https://www.ipcc.ch/site/assets/uploads/2018/03/ar5_wgII_spm_es-1.pdf. Accessed 29 September 2021

  43. IPCC (2007) Climate Change 2007: Synthesis Report, Geneva, Switzerland. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_sp.pdf. Accessed 29 September 2021

  44. Edwards RD, Smith KR (2002) Carbon balances, global warming commitments, and health implications of avoidable emissions from residential energy use in China: evidence from an emissions database. Available online: http://www.giss.nasa.gov/meetings/pollution2002/d3_edwards.html (accessed on 2 May 2020). Accessed 2 May 2020

  45. MacCarty N, Ogle D, Still D, Bond T, Roden C (2008) A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustain Dev 12(2):56–65. https://doi.org/10.1016/S0973-0826(08)60429-9

    Article  CAS  Google Scholar 

  46. Beyene A, Bluffstone R, Gebreegzhiaber Z, Martinsson P, Mekonnen A, Vieider F (2015) Do improved biomass cookstoves reduce fuelwood consumption and carbon emissions ? evidence from rural Ethiopia using a randomized treatment trial with electronic monitoring. https://doi.org/10.1596/1813-9450-7324

  47. Rabaçal M, Fernandes U, Costa M (2013) Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones. Renew Energy 51(x):220–226. https://doi.org/10.1016/j.renene.2012.09.020

    Article  CAS  Google Scholar 

  48. Garcia-Maraver A, Zamorano M, Fernandes U, Rabaçal M, Costa M (2014) Relationship between fuel quality and gaseous and particulate matter emissions in a domestic pellet-fired boiler. Fuel 119:141–152. https://doi.org/10.1016/j.fuel.2013.11.037

    Article  CAS  Google Scholar 

  49. Medina P, Berrueta V, Martínez M, Ruiz V, Edwards RD, Masera O (2017) Comparative performance of five Mexican plancha-type cookstoves using water boiling tests. Dev Eng 2:20–28. https://doi.org/10.1016/j.deveng.2016.06.001

    Article  Google Scholar 

  50. Jetter JJ, Kariher P (2009) Solid-fuel household cook stoves: characterization of performance and emissions. Biomass Bioenerg 33(2):294–305. https://doi.org/10.1016/j.biombioe.2008.05.014

    Article  CAS  Google Scholar 

  51. Berrueta VM, Edwards RD, Masera O (2008) Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renew Energy 33(5):859–870. https://doi.org/10.1016/j.renene.2007.04.016

    Article  Google Scholar 

  52. Nyang FO (1999) Household energy demand and environmental management in Kenya. University of Amsterdam. https://pure.uva.nl/ws/files/3336286/7044_UBA003000041_024.pdf. Accessed 22 Apr 2021

  53. Kajina W, Junpen A, Garivait S, Kamnoet O, Keeratiisariyakul P, Rousset P (2019) Charcoal production processes: an overview. Int. J. Sustain. Energy Environ.10:19–25. https://agritrop.cirad.fr/593734/1/JGSEE%202019%20Charcoal%20production%20pp.%2019-25.pdf. Accessed 22 Mar 2021

  54. U. S. Environmental Protection Agency (1995) “Emission factor documentation for AP-42 refractory manufacturing final report” 1995. https://www3.epa.gov/ttn/chief/ap42/ch10/bgdocs/b10s07.pdf. Accessed 22 Apr 2021

  55. Johansson LS, Leckner B, Gustavsson L, Cooper D, Tullin C, Potter A (2004) (2004), “Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets.” Atmos Environ 38(25):4183–4195. https://doi.org/10.1016/j.atmosenv.2004.04.020

    Article  CAS  Google Scholar 

  56. Johnson M, Edwards R, Berrueta V, Masera O (2010) New approaches to performance testing of improved cookstoves. Environ Sci Technol 44(1):368–374. https://doi.org/10.1021/es9013294

    Article  CAS  PubMed  Google Scholar 

  57. Medina P, Berrueta V, Martínez M, Ruiz V, Ruiz-Mercado I, Masera OR (2017) (2017), “Closing the gap between lab and field cookstove tests: Benefits of multi-pot and sequencing cooking tasks through controlled burning cycles.” Energy Sustain Dev 41:106–111. https://doi.org/10.1016/j.esd.2017.08.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Mexican Council for Science and Technology (CONACYT) and the Mexican Secretariat of Energy (Fondo de Sustentabilidad Energética) for supporting this research on the project entitled “Clúster de biocombustibles sólidos para generación térmica y eléctrica”, Project Number (246911).

Funding

This research was funded by the Fondo de Sustentabilidad Energética SENER-CONACYT, grant number 2014 246911.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.V., P. M. and V.R.-G.; formal analysis, J. V., S. R., D.V., and V.R.-G.; funding acquisition, O.M. and V.R.-G.; methodology, J.V. and V.R.-G.; writing—original draft, J.V., P. M., and V.R.-G.; writing—review and editing, V.R.-G., and O.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Víctor Ruiz-García.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

The authors consent to the publication of this manuscript. There is no need of consent from any other authors.

Competing Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-García, V., Medina, P., Vázquez, J. et al. Bioenergy Devices: Energy and Emissions Performance for the Residential and Industrial Sectors in Mexico. Bioenerg. Res. 15, 1764–1776 (2022). https://doi.org/10.1007/s12155-021-10362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10362-5

Keywords

Navigation