Skip to main content
Log in

Sequential Thermochemical Hydrolysis of Corncobs and Enzymatic Saccharification of the Whole Slurry Followed by Fermentation of Solubilized Sugars to Ethanol with the Ethanologenic Strain Escherichia coli MS04

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Interest in the use of corncobs as feedstock for bioethanol production is growing. This study assesses the feasibility of sequential thermochemical diluted sulfuric acid pretreatment of corncobs at moderate temperature to hydrolyze the hemicellulosic fraction, followed by enzymatic hydrolysis of the whole slurry, and fermentation of the obtained syrup. The total sugar concentration after enzymatic hydrolysis was 85.21 g/l, i.e., 86 % of the sugars were liberated from the polymeric fractions, together with a low amount of furfural (0.26 g/l) and 4.01 g/l of acetic acid. The syrups, which contained 36.3, 40.9, 4.47, and 1.84 g/l of xylose, glucose, arabinose, and mannose, respectively, were fermented (pH 7, 37 °C, 150 rpm) to ethanol with the metabolically engineered acetate-tolerant Escherichia coli strain MS04 under non-aerated conditions, producing 35 g/l of ethanol in 18 h (1.94 gEtOH/l/h), i.e., a conversion yield greater than 80 % of the theoretical value based on total sugars was obtained. Hence, using the procedures developed in this study, 288 l of ethanol can be produced per metric ton of dry corncobs. Strain MS04 can ferment sugars in the presence of acetate, and the amount of furans generated during the sequential thermochemical and enzymatic hydrolysis was low; hence, the detoxification step was avoided. The residual salts, acetic acid, and solubilized lignin present in the syrup did not interfere with the production of ethanol by E. coli MS04 and the results show that this strain can metabolize mixtures of glucose and xylose simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  1. Valdez-Vazquez I, Acevedo-Benítez JA, Hernández-Santiago C (2010) Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renew Sustain Energy Rev 14(7):2147–2153. doi:10.1016/j.rser.2010.03.034

    Article  CAS  Google Scholar 

  2. Vargas-Tah A, Moss-Acosta CL, Trujillo-Martinez B, Tiessen A, Lozoya-Gloria E, Orencio-Trejo M, Gosset G, Martinez A (2015) Non-severe thermochemical hydrolysis of stover from white corn and sequential enzymatic saccharification and fermentation to ethanol. Bioresour Technol 198:611–618. doi:10.1016/j.biortech.2015.09.036

    Article  CAS  PubMed  Google Scholar 

  3. Eisentraut A (2010) Sustainable production of second-generation biofuels. International Energy Agency. http://www.iea.org/publications/freepublications/publication/second_generation_biofuels.pdf

  4. Erickson MJ, Tyner WE (2010) The economics of harvesting corn cobs for energy. Purdue Extension Education Store. https://www.extension.purdue.edu/extmedia/ID/ID-417-W.pdf

  5. Maung TA, Gustafson CR (2013) Economic impact of harvesting corn stover under time constraint: the case of North Dakota. Econ Res Int 2013:1–13. doi:10.1155/2013/321051

    Article  Google Scholar 

  6. Birrell SJ, Karlen DL, Wirt A (2014) Development of sustainable corn stover harvest strategies for cellulosic ethanol production. Bioenergy Res 7(2):509–516. doi:10.1007/s12155-014-9418-8

    Article  CAS  Google Scholar 

  7. Ward L (2015) POET-DSM Project LIBERTY. 2015 Project peer review (Demonstration and market transformation technology area). U.S. Department of Energy. Bioenergy Technologies Office. http://energy.gov/sites/prod/files/2015/04/f22/demonstration_market_transformation_ward_3433.pdf

  8. Schwietzke S, Kim Y, Ximenes E, Mosier N, Ladisch M (2009) Ethanol production from maize. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer, Berlin Heidelberg, pp 347–364

    Chapter  Google Scholar 

  9. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953. doi:10.1007/s00253-006-0827-2

    Article  PubMed  Google Scholar 

  10. Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang Y-HP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sustain Energy Rev 15(9):4950–4962. doi:10.1016/j.rser.2011.07.058

    Article  CAS  Google Scholar 

  11. Wang L, Zhao B, Liu B, Yu B, Ma C, Su F, Hua D, Li Q, Ma Y, Xu P (2010) Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresour Technol 101(20):7908–7915. doi:10.1016/j.biortech.2010.05.031

    Article  CAS  PubMed  Google Scholar 

  12. Jeevan P, Nelson R, Rena AE (2011) Optimization studies on acid hydrolysis of corn cob hemicellulosic hydrolysate for microbial production of xylitol. J Microbiol Biotechnol Res 1(4):114–123, http://scholarsresearchlibrary.com/JMB-vol1-iss4/JMB-2011-1-4-114-123.pdf

    CAS  Google Scholar 

  13. Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221. doi:10.1016/j.biortech.2011.10.083

    Article  CAS  PubMed  Google Scholar 

  14. Ruriani E, Meryandini A, Sunarti T (2012) Enzymatic hydrolysis of delignified corncob using combined enzyme. Int J Food, Nutr Public Health. Vol. 5 No. 1/2/3 http://www.worldsustainable.org/index.php/component/docman/cat_view/3-international-journal-of-food-nutrition-public-health/175-ijfnph-v5-nos1-2-3-2012?Itemid=

  15. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729. doi:10.1021/ie801542g

    Article  CAS  Google Scholar 

  16. Verardi A, De Bari I, Ricca E, Calabro V (2012) Hydrolysis of lignocellulosic biomass: Current status of processes and technologies and future perspectives. Bioethanol InTech, In, pp 95–116

    Google Scholar 

  17. Corredor DY (2008) Pretreatment and enzymatic hydrolysis of lignocellulosic biomass. Dissertation. Kansas State University

  18. Pedraza-Segura L, Toribio-Cuaya H, Flores-Tlacuáhuac A (2013) Multiobjective optimization approach for cellulosic biomass pretreatment. Ind Eng Chem Res 52(15):5357–5364. doi:10.1021/ie3032058

    Article  CAS  Google Scholar 

  19. Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84(6):81–96. doi:10.1385/ABAB:84-86:1-9:81

    Article  PubMed  Google Scholar 

  20. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref 1:119–134. doi:10.1002/bbb.4

    Article  Google Scholar 

  21. Flores-Sánchez A, Flores-Tlacuahuac A, Pedraza-Segura L (2013) Model-based experimental design to estimate kinetic parameters of the enzymatic hydrolysis of lignocellulose. Ind Eng Chem Res 52:4834–4850. doi:10.1021/ie400039m

    Article  Google Scholar 

  22. Fernández-Sandoval MT, Huerta-Beristain G, Trujillo-Martinez B, Bustos P, González V, Bolivar F, Gosset G, Martinez A (2012) Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 96(5):1291–1300. doi:10.1007/s00253-012-4177-y

    Article  PubMed  Google Scholar 

  23. National Renewable Energy Laboratory (2008) Standard Biomass Analytical Procedures. http://www.nrel.gov/biomass/analytical_procedures.html

  24. Martinez A, Rodríguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysate. Biotechnol Bioeng 69:526–536

    Article  CAS  PubMed  Google Scholar 

  25. Muñoz-Gutiérrez I, Oropeza R, Gosset G, Martinez A (2012) Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J Ind Microbiol Biotechnol 39(8):1141–1152. doi:10.1007/s10295-012-1122-0

    Article  PubMed  Google Scholar 

  26. US Patent No. 8563283, Strains of Escherichia coli modified by metabolic engineering to produce chemical compounds from hydrolyzed lignocellulose, pentoses, hexoses or other carbon sources. Inventors: Martínez A, Gosset G, Hernández GT., Huerta G, Trujillo-Martinez B, Utrilla J. Date: Oct. 22, 2013.

  27. Utrilla J, Gosset G, Martinez A (2009) ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate. J Ind Microbiol Biotechnol 36:1057–1062. doi:10.1007/s10295-009-0589-9

    Article  CAS  PubMed  Google Scholar 

  28. Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29(3):397–404. doi:10.1007/s10529-006-9252-y

    Article  CAS  PubMed  Google Scholar 

  29. Huerta-Beristain G, Utrilla J, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A (2008) Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 15(1):55–64. doi:10.1159/000111993

    Article  CAS  PubMed  Google Scholar 

  30. Toribio-Cuaya H, Pedraza-Segura L, Macías-Bravo S, Gonzalez-García I, Vasquez-Medrano R, Favela-Torres E (2014) Characterization of lignocellulosic biomass using five simple steps. J Chem Biol Physic Sci 4(5):28–47, Special Issue, Section D

    Google Scholar 

  31. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  32. Ruzene D, Yagiz E, Marangoz D, Silva D, Vicente D, Teixeira J. (2008) Hydrothermal treatments of corn cob and hemicelluloses extraction. Ferreira EC and Mota M (Eds.) Proceedings of the 10th International Chemical and Biological Engineering Conference—CHEMPOR 2008 Braga, Portugal, September 4–6, 2008

  33. Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6:3547–3568

    Google Scholar 

  34. Chandel A, da Silva SS, Singh O V (2011) Detoxification of lignocellulosic hydrolysates for improved bioethanol. Chapter 10. Production. Biofuel Production—Recent Developments and Prospects. InTech. 225–246

  35. Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K (2013) Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol 133:270–278. doi:10.1016/j.biortech.2013.01.075

    Article  CAS  PubMed  Google Scholar 

  36. Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16, ttp://www.biotechnologyforbiofuels.com/content/6/1/16

  37. Lin L, Yan R, Liu Y, Jiang W (2010) In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin. Bioresour Technol 21:8217–8223. doi:10.1016/j.biortech.2010.05.084

    Article  Google Scholar 

  38. Gutiérrez-Rivera B, Waliszewski-Kubiak K, Carvajal-Zarrabal O, Aguilar-Uscanga MG (2012) Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. J Chem Technol Biotechnol 87:263–270. doi:10.1002/jctb.2709

    Article  Google Scholar 

  39. Lau MW, Gunawan C, Balan V, Dale BE (2010) Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 3:11, http://www.biotechnologyforbiofuels.com/content/3/1/11

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koppram R, Nielsen F, Albers E, Lambert A, Wännström S, Welin L, Zacchi G, Olsson L (2013) Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuels 6(1):2, http://www.biotechnologyforbiofuels.com/content/6/1/2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39. doi:10.1016/j.copbio.2016.02.031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Samuel Macías-Bravo for the technical support during the project. Enzymatic preparations Accelerase 1500 and Accelerase XY were kindly provided by Genencor International Inc. Xylose was provided by Danisco, Mexico. This work was supported by the Mexican Council of Science and Technology (CONACyT), grants 94290 and CB-2010-156451; the Fund for International Cooperation in Science and Technology “Network of the European Union, Latin America and the Caribbean Countries on Joint Innovation and Research Activities” (FONCICYT ERANet-LAC), grant C0013-248192; the Bioenergy Thematic Network (“Red Mexicana de Bioenergía”), grant 260457; and the Development of Research and Higher Culture AC (FICSAC) programme of the Universidad Iberoamericana, grant 132020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorena Pedraza, Sylvie Le Borgne or Alfredo Martinez.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedraza, L., Flores, A., Toribio, H. et al. Sequential Thermochemical Hydrolysis of Corncobs and Enzymatic Saccharification of the Whole Slurry Followed by Fermentation of Solubilized Sugars to Ethanol with the Ethanologenic Strain Escherichia coli MS04. Bioenerg. Res. 9, 1046–1052 (2016). https://doi.org/10.1007/s12155-016-9756-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9756-9

Keywords

Navigation