Skip to main content

Advertisement

Log in

Nitrogen and Phosphorus Fertilizer Effects on Establishment of Giant Miscanthus

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Research efforts have recently been increasing to evaluate giant miscanthus (Miscanthus × giganteus L.) as a bioenergy feedstock and to develop recommendations for efficient management practices. The objectives of this study were to evaluate effects of nitrogen (N) and phosphorus (P) fertilization on the yield and nutrient removal of giant miscanthus and the change in soil nutrient concentration during establishment of giant miscanthus in the Piedmont and Mountain Regions of North Carolina. Research sites were established at Mills River and Oxford, NC, in 2008 and 2009, respectively. Yield and tissue nutrient content were determined after senescence. Giant miscanthus produced biomass dry yields of up to 24 Mg ha−1 during the third growing season. Fertilization with 45 kg N ha−1 increased yield by 46 % in 2010 at Oxford, but did not affect yield at Oxford in 2009 or at Mills River from 2008 to 2010. Fertilization with 147 kg P ha−1 increased yield by 32 % in 2008 at Mills River, but did not affect yield in 2009 or 2010 at either site. Mehlich-3 P concentration in the upper 20 cm of soil decreased after initial P applications, with no changes in the 0 P control plots detected during this study. Giant miscanthus successfully established at Mills River and Oxford, NC with minimal N and P fertilizer inputs on soils with low initial P concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: The potential of miscanthus. Glob Chang Biol 14:2000–2014

    Article  Google Scholar 

  2. Linde-Laursen I (1993) Cytogenetic analysis of Miscanthus × giganteus, an interspecific hybrid. Hereditas 119:297–300

    Article  Google Scholar 

  3. Himken M, Lammel J, Neukirchen D, Czypionka-Krause U, Olfs H (1997) Cultivation of miscanthus under west European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126

    Article  CAS  Google Scholar 

  4. Jones MB, Walsh M (2001) Miscanthus for energy and fibre. James & James, London

    Google Scholar 

  5. Propheter JL, Staggenborg S (2010) Performance of annual and perennial biofuel crops: nutrient removal during the first two years. Agron J 102:798–805

    Article  CAS  Google Scholar 

  6. Beale CV, Long SP (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 12:419–428

    Article  Google Scholar 

  7. Heaton EA, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. GCB Bioenergy 1:297–307

    Article  CAS  Google Scholar 

  8. Cadoux S, Riche AB, Yates NE, and Machet J (201) Nutrient requirements of Miscanthus × giganteus: conclusions from a review of published studies. Biomass Bioenergy. 38:14–22

  9. Boehmel C, Claupein W, Lewandowski I (2008) Comparing annual and perennial energy cropping systems with different management intensities [electronic resource]. Agric Syst 96:224–236

    Article  Google Scholar 

  10. Cosentino SL, Copani V, Foti S, Patane C, Sanzone E (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment [electronic resource]. Ind Crops Products 25:75–88

    Article  Google Scholar 

  11. Ercoli L, Bonari E, Masoni A, Mariotti M (1999) Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of miscanthus. Field Crops Res 63:3–11

    Article  Google Scholar 

  12. Jacks-Sterrenberg I (1995) Investigations on yield physiology of Miscanthus sinensisanderss. with regard to its use as an energy plant. Untersuchungen zur ertrags physiologie von Miscanthus sinensis anderss. hinsichtlich einer verwendung als energiepflanze. Justus-Liebig-Universität, Fachbereich Agrarwissenschaften und Umweltsicherung, Giessen, Germany

  13. Beuch S (1998) Zumeinfluß des anbaus und der biomassestruktur von Miscanthus × giganteus (GREEF et DEU.) auf den nährstoffhaushalt und dieorganischebodensubstanz. 163

  14. Bullard MJ, Christian DG, Wilkins C (1996) The potential of graminaceous biomass crops for energy production in the UK: an overview. p. 592. In: Ferrero GL, Henius UM, Hultberg S, Sachau J, Wiinblad M (eds) Biomass for energy and the environment. Proceedings of the Ninth European Bioenergy Conference, Copenhagen, Denmark. 1996. Pergamon, New York

    Google Scholar 

  15. Christian DG, Yates NE, Riche AB (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests [electronic resource]. Ind Crops Products 28:320–327

    Article  Google Scholar 

  16. Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, miscanthus. Glob Chang Biol 13:2296–2307

    Article  Google Scholar 

  17. Danalatos NG, Archontoulis SV, Mitsios I (2007) Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31:145–152

    Article  Google Scholar 

  18. Heaton EA, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    Article  Google Scholar 

  19. Jorgensen U (1996) Miscanthus yields in Denmark. p. 48. In G.L. Ferrero, U.M. Henius, S. Hultberg, J. Sachau and M. Wiinblad (eds.) Biomass for energy and the environment. Proceedings of the Ninth European Bioenergy Conference, Copenhagen, Denmark. 27 June 1996. Pergamon, New York

  20. Jorgensen U (1997) Genotypic variation in dry matter accumulation and content of N, K, and Cl in miscanthus in Denmark. Biomass Bioenergy 12:155

    Article  CAS  Google Scholar 

  21. Schwarz KU, Schung E (1993) Ertragsentwicklung bei mehrjährigen Beständen von Miscanthus × giganteus. Mitt Ges Pflanzenbauwiss 6:125–128

    Google Scholar 

  22. Strullu L, Cadoux S, Preudhomme M, Jeuffroy M, Beaudoin N (2011) Biomass production and nitrogen accumulation and remobilisation by Miscanthus × giganteus as influenced by nitrogen stocks in belowground organs. Field Crops Res 121:381–391

    Article  Google Scholar 

  23. Miguez FE, Bollero GA, Long SP, Villamil MB (2008) Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production [electronic resource]. Agric For Meteorol 148:1280–1292

    Article  Google Scholar 

  24. Maughan M, Bollero G, Lee DK, Darmody R, Bonos S, Cortese L, Murphy J, Gaussoin R, Sousek M, Williams D, Williams L, Miguez F, Voigt T (2012) Miscanthus × giganteus productivity: the effects of management in different environments. GCB Bioenergy 4:253–265

    Article  Google Scholar 

  25. Hardy DH, Tucker MR, and Stokes CE (2009) Crop fertilization based on North Carolina soil tests. North Carolina Department of Agriculture and Consumer Services, Agronomic Division, Raleigh, NC

  26. Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  27. Mehlich A (1976) New buffer pH method for rapid estimation of exchangeable acidity and lime requirement of soils. Commun Soil Sci Plant Anal 7:637–652

    Article  CAS  Google Scholar 

  28. LACHAT (2013) Methods list for automated ion analyzers. http://www.lachatinstruments.com/applications/methods.asp. Accessed 26 Sept. 2013

  29. SAS (2009) SAS/STAT 9.2 User's guide, 2nd ed. http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#titlepage.htm. Accessed 26 Sept. 2013

  30. Kaack K, Schwarz KU (2001) Morphological and mechanical properties of miscanthus in relation to harvesting, lodging, and growth conditions. Ind Crops Products 14:145–154

    Article  Google Scholar 

  31. Cosentino SL, Sanzone E, Mantineo M, Copani V, D'Agosta GM (2006) First results on evaluation of Arundo donax L. clones collected in southern Italy [electronic resource]. Ind Crops Products 23:212–222

    Article  Google Scholar 

  32. Schwarz H, Ruckenbauer P, Ehrendorfer K, Liebhard P (1994) The effect of fertilization on yield and quality of Miscanthus sinensis 'giganteus'. Ind Crops Products 2:153–159

    Article  Google Scholar 

  33. Miguez FE, Zhu X, Humphries S, Bollero GA, Long SP (2009) A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus × giganteus: description, parameterization and validation. GCB Bioenergy 1:282–296

    Article  Google Scholar 

  34. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jorgensen U et al (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Article  Google Scholar 

  35. Christian DG, Haase E (2001) Agronomy of miscanthus. p. 21. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, UK

    Google Scholar 

  36. Neukirchen D, Czypionka-Krause U, Olfs HW, Himken M, Lammel J (1999) Spatial and temporal distribution of the root system and root nutrient content of an established miscanthus crop. Eur J Agron 11:301–309

    Article  Google Scholar 

  37. Eckert B, Stoffels M, Hartmann A, Halbritter A, Weber OB, Kirchhof G (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass miscanthus. Int J Syst Evol Microbiol 51:17–26

    CAS  PubMed  Google Scholar 

  38. Lewandowski I, Schmidt U (2006) Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric Ecosyst Environ 112:335–346

    Article  Google Scholar 

  39. Newman YC, Vendramini JMB, Rechcigl JE, Sollenberger LE, Silveira ML, Agyin-Birikorang S, Adjei MB, Scholberg JM (2009) Nitrogen fertilization effect on phosphorus remediation potential of three perennial warm-season forages [electronic resource]. Agron J 101:1243–1248

    Article  CAS  Google Scholar 

  40. Hussaini MA, Ogunlela VB, Ramalan AA, Falaki AM (2008) Mineral composition of dry season maize (Zea mays L.) in response to varying levels of nitrogen, phosphorus and irrigation at Kadawa, Nigeria. World J Agric Sci 4:775–780

    Google Scholar 

  41. Khan NH, Raja MI, Tahir GR (1980) Interaction studies on nitrogen, phosphorus and zinc application to corn under field conditions. Pak J Agric Res 1:119–124

    CAS  Google Scholar 

  42. Christian DG, Poulton PR, Riche AB, Yates NE, Todd AD (2006) The recovery over several seasons of 15 N-labelled fertilizer applied to Miscanthus × giganteus ranging from 1 to 3 years old. Biomass Bioenergy 30:125–133

    Article  CAS  Google Scholar 

  43. Gilliam JW (2011) Nutrients in North Carolina soils and waters. http://www.soil.ncsu.edu/about/century/nutrientsinNC.html. Accessed 26 Sept. 2013

Download references

Acknowledgments

This study was funded by the Biofuels Center of North Carolina, in cooperation with the North Carolina Agricultural Research Service and North Carolina Agricultural Experiment Station. We appreciate the cooperation of the NC Department of Agriculture and the efforts of Dwayne Tate, Tom Eaker, Jeremy Smith, Darren Touchell, and Collin Suttles to conduct the field operations of the study. We also acknowledge the supervision and staff at the Mountain Horticultural Crops Research Station and the Oxford Tobacco Research Station for their assistance.

Disclaimer

Trade or manufacturers’ names mentioned are for information only and do not constitute endorsement, recommendation, or exclusion by North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Gehl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haines, S.A., Gehl, R.J., Havlin, J.L. et al. Nitrogen and Phosphorus Fertilizer Effects on Establishment of Giant Miscanthus. Bioenerg. Res. 8, 17–27 (2015). https://doi.org/10.1007/s12155-014-9499-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9499-4

Keywords

Navigation