Skip to main content

Advertisement

Log in

Climate Impact of Willow Grown for Bioenergy in Sweden

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Short-rotation coppice willow (SRCW) is a fast-growing and potentially high-yielding energy crop. Transition to bioenergy has been identified in Sweden as one strategy to mitigate climate change and decrease the current dependency on fossil fuel. In this study, life cycle assessment was used to evaluate and compare the climate impacts of SRCW systems, for the purpose of evaluating key factors influencing the climate change mitigation potential of SRCW grown on agricultural land in Sweden. Seven different scenarios were defined and analysed to identify the factors with the most influence on the climate. A carbon balance model was used to model carbon fluxes between soil, biomass and atmosphere under Swedish growing conditions. The results indicated that SRCW can act as a temporary carbon sink and therefore has a mitigating effect on climate change. The most important factor in obtaining a high climate change-mitigating effect was shown to be high yield. Low yield gave the worst mitigating effect of the seven scenarios, but it was still better than the effect of the reference systems, district heating produced from coal or natural gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. UNFCCC (2011) Report of the Conference of the Parties on its sixteenth session, held in Cancun from 29 November to 10 December 2010. Part Two: Action taken by the Conference of the Parties at its sixteenth session. Decisions adopted by the Conference of the Parties. FCCC/CP/2010/7/Add.1

  2. European Commission (2013) The EU climate and energy package. European Commission

  3. Ericsson N, Porsö C, Ahlgren S, Nordberg Å, Sundberg C, Hansson P-A (2013) Time-dependent climate impact of a bioenergy system—methodology development and application to Swedish conditions. GCB Bioenergy 5(5):580–590. doi:10.1111/gcbb.12031

    Article  Google Scholar 

  4. Heller MC, Keoleian GA, Volk TA (2003) Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenergy 25(2):147–165. doi:10.1016/S0961-9534(02)00190-3

    Article  CAS  Google Scholar 

  5. Statistics Sweden (2013) Land use in Sweden, 6th edn. Statistics Sweden, Regions and Environment Department, Örebro

    Google Scholar 

  6. Hollsten R, Arkelöv O, Ingelman G (2013) Handbok för salixodlare (Manual for willow farmers), Secondth edn. Jordbruksverket (Swedish Board of Agriculture), Jönköping

    Google Scholar 

  7. Djomo SN, Kasmioui OE, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy 3(3):181–197. doi:10.1111/j.1757-1707.2010.01073.x

    Article  CAS  Google Scholar 

  8. SOU (2007) Bioenergi från jordbruket – en växande resurs. Bilagedel (Bioenergy from agriculture—a growing resource. Appendix). Statens offentliga utredningar, Stockholm

    Google Scholar 

  9. Dimitriou I, Rosenqvist H, Berndes G (2011) Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass Bioenergy 35(11):4613–4618. doi:10.1016/j.biombioe.2011.09.006

    Article  Google Scholar 

  10. Quinkenstein A, Pape D, Freese D, Schneider BU, Hüttl RF (2012) Biomass, carbon and nitrogen distribution in living woody plant parts of Robinia pseudoacacia L. growing on reclamation sites in the mining region of Lower Lusatia (Northeast Germany). Int J For Res 2012:10

    Google Scholar 

  11. Cherubini F (2010) GHG balances of bioenergy systems—overview of key steps in the production chain and methodological concerns. Renew Energy 35(7):1565–1573. doi:10.1016/j.renene.2009.11.035

    Article  CAS  Google Scholar 

  12. Börjesson P (2006) Livscykelanalys av Salixproduktion (Life Cycle Assessment of Willow Production, english abstract) (Life Cycle Assessment of Willow Production). Institutionen för teknik och samhälle. Avdelningen för miljö- och energisystem, Lund

    Google Scholar 

  13. González-García S, Mola-Yudego B, Murphy R (2013) Life cycle assessment of potential energy uses for short rotation willow biomass in Sweden. Int J Life Cycle Assess 18(4):783–795. doi:10.1007/s11367-012-0536-2

    Article  Google Scholar 

  14. González-García S, Mola-Yudego B, Dimitriou I, Aronsson P, Murphy R (2012) Environmental assessment of energy production based on long term commercial willow plantations in Sweden. Sci Total Environ 421–422:210–219. doi:10.1016/j.scitotenv.2012.01.041

    Article  PubMed  Google Scholar 

  15. Fuglestvedt JS, Berntsen TK, Godal O, Sausen R, Shine KP, Skodvin T (2003) Metrics of climate change: assessing radiative forcing and emission indices. Clim Chang 58(3):267–331. doi:10.1023/A:1023905326842

    Article  Google Scholar 

  16. Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68(3):281–302. doi:10.1007/s10584-005-1146-9

    Article  CAS  Google Scholar 

  17. Cherubini F, Guest G, Strømman AH (2012) Application of probability distributions to the modeling of biogenic CO2 fluxes in life cycle assessment. GCB Bioenergy 4(6):784–798. doi:10.1111/j.1757-1707.2011.01156.x

    Article  CAS  Google Scholar 

  18. Sathre R, Gustavsson L (2012) Time-dependent radiative forcing effects of forest fertilization and biomass substitution. Biogeochemistry 109(1–3):203–218. doi:10.1007/s10533-011-9620-0

    Article  CAS  Google Scholar 

  19. Zetterberg L, Chen D (2011) The time aspect of bioenergy—climate impacts of bioenergy due to differences in carbon uptake rates

  20. Baumann H, Tillman A-M (2004) The hitch hiker’s guide to LCA: an orientation in life cycle assessment methodology and application. Studentlitteratur, Lund

    Google Scholar 

  21. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21. doi:10.1016/j.jenvman.2009.06.018

    Article  Google Scholar 

  22. Andrén O, Kätterer T, Karlsson T (2004) ICBM regional model for estimations of dynamics of agricultural soil carbon pools. Nutr Cycl Agroecosyst 70(2):231–239. doi:10.1023/B:FRES.0000048471.59164.ff

    Article  Google Scholar 

  23. Schlamadinger B, Apps M, Bohlin F, Gustavsson L, Jungmeier G, Marland G, Pingoud K, Savolainen I (1997) Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass Bioenergy 13(6):359–375. doi:10.1016/S0961-9534(97)10032-0

    Article  CAS  Google Scholar 

  24. Mola-Yudego B, Aronsson P (2008) Yield models for commercial willow biomass plantations in Sweden. Biomass Bioenergy 32(9):829–837. doi:10.1016/j.biombioe.2008.01.002

    Article  Google Scholar 

  25. Guidi W, Pitre FE, Labrecque M (2013) Short-rotation coppice of willow for the production of biomass in Eastern Canada. In: Matovic MD (ed). doi:10.5772/51111

  26. Rytter R-M (2001) Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. For Ecol Manag 140(2–3):177–192. doi:10.1016/S0378-1127(00)00319-4

    Article  Google Scholar 

  27. Brady NC, Weil RR (1999) The nature and properties of soils. Prentice Hall

  28. Ahlgren S, Hansson P-A, Kimming M, Aronsson P, Lundkvist H (2009) Greenhouse gas emissions from cultivation of agricultural crops for biofuels and production of biogas from manure—implementation of the Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. Revised according to instructions for interpretation of the Directive from the European Commission 30 July 2009, Uppsala

    Google Scholar 

  29. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan

    Google Scholar 

  30. Aronsson P, Rosenqvist H (2011) Gödslingsrekommendationer för Salix 2011 (Recommendations for willow fertilisation 2011)

  31. Aronsson P, Rosenqvist H, Dimitriou I (2014) Impact of nitrogen fertilization to short-rotation willow coppice plantations grown in Sweden on yield and economy. BioEnergy Research:1-9. doi:10.1007/s12155-014-9435-7

  32. Baky A, Forsberg M, Rosenqvist H, Jonsson N, Sundberg M (2009) Skördeteknik och logistik för bättre lönsamhet från små odlingar av Salix (Harvest and logistics for better profitability from small cultivations of Short Rotation Willow Coppice). Grödor från åker till energi. Institutet för jordbruks- och miljöteknik (JTI), Stockholm

    Google Scholar 

  33. Jonsson N, Jiris R (1997) Torrsubstansförluster och mikrobiell aktivitet vid lagring av salixflis (Dry matter losses and microbial activity during storage of willow chips). JTI

  34. Paulrud S, Fridell E, Stripple H, Gustafsson T (2010) Uppdatering av klimatrelaterade emissionsfaktorer (Updated climate related emission factors). Swedish Meteorological and Hydrological Institute (SMHI), Norrköping

    Google Scholar 

  35. Uppenberg S, Almemark M, Brandel M, Lindfors L-G, Marcus H-O, Stripple H, Wachtmeister A, Zetterberg L (2001) MILJÖFAKTABOK FÖR BRÄNSLEN Del 2. Bakgrundsinformation och Teknisk bilaga (ENVIRONMENTAL FACT BOOK FOR FUELS. Part 2. Background Information and Technical Appendix). Andra versionen (second edition) edn., Stockholm

  36. Aronsson H, Stenberg M, Rydberg T (2009) Kväve- och fosforutlakning från två växtföljder på lerjord med grön- och stubbträda (Nitrogen and phosphor leaching from two crop rotations on clay soil with green fallow and stubble, english abstract.). Ekohydrologi 113. Sveriges lantbruksuniversitet (SLU), Uppsala

    Google Scholar 

  37. Otabbong E, Persson J, Iakimenko O, Sadovnikova L (1997) The Ultuna long-term soil organic matter experiment. Plant Soil 195(1):17–23. doi:10.1023/A:1004276732679

    Article  CAS  Google Scholar 

  38. Karlsson T (2012) Carbon and nitrogen dynamics in agricultural soils. Model applications at different scales in time and space. Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala

  39. Kätterer T, Andrén O, Persson J (2004) The impact of altered management on long-term agricultural soil carbon stocks—a Swedish case study. Nutr Cycl Agroecosyst 70(2):179–188. doi:10.1023/B:FRES.0000048481.34439.71

    Article  Google Scholar 

  40. Mulder K, Hagens NJ (2008) Energy return on investment: toward a consistent framework. AMBIO: J Hum Environ 37(2):74–79

    Article  Google Scholar 

  41. Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 881

    Google Scholar 

  42. IPCC (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  43. Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Glob Biogeochem Cycles 15(4):891–907. doi:10.1029/2000GB001375

    Article  CAS  Google Scholar 

  44. IPCC (2001) The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC Third Assessment Report - Climate Change 2001 Cambridge University Press, Cambridge

    Google Scholar 

  45. Huijbregts MAJ (1998) Application of uncertainty and variability in LCA. Int J Life Cycle Assess 3(5):273–280. doi:10.1007/BF02979835

    Article  Google Scholar 

  46. Röös E, Sundberg C, Hansson P-A (2010) Uncertainties in the carbon footprint of food products: a case study on table potatoes. Int J Life Cycle Assess 15(5):478–488. doi:10.1007/s11367-010-0171-8

    Article  Google Scholar 

  47. Björklund AE (2002) Survey of approaches to improve reliability in LCA. Int J Life Cycle Assess 7(2):64–72. doi:10.1007/BF02978849

    Article  Google Scholar 

  48. Dimitriou I, Mola-Yudego B, Aronsson P, Eriksson J (2012) Changes in organic carbon and trace elements in the soil of willow short-rotation coppice plantations. Bioenergy Res 5(3):563–572. doi:10.1007/s12155-012-9215-1

    Article  CAS  Google Scholar 

  49. Rytter R-M (1999) Fine-root production and turnover in a willow plantation estimated by different calculation methods. Scand J For Res 14(6):526–537. doi:10.1080/02827589908540817

    Article  Google Scholar 

  50. Dimitriou I, Mola-Yudego B, Aronsson P (2012) Impact of willow short rotation coppice on water quality. Bioenergy Res 5(3):537–545. doi:10.1007/s12155-012-9211-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the STandUP for Energy program and Swedish Research Council Formas (project number 2009-2056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torun Hammar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammar, T., Ericsson, N., Sundberg, C. et al. Climate Impact of Willow Grown for Bioenergy in Sweden. Bioenerg. Res. 7, 1529–1540 (2014). https://doi.org/10.1007/s12155-014-9490-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9490-0

Keywords

Navigation