Skip to main content

Advertisement

Log in

Evaluation of a Single-Pass, Cut and Chip Harvest System on Commercial-Scale, Short-Rotation Shrub Willow Biomass Crops

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Harvesting is the single largest cost in the production of short-rotation woody crops (SRWC) like shrub willow, and previous systems tested in North America have not been effective for the size of material grown. The objective of this study was to evaluate the performance of a single-pass, cut and chip harvester in conjunction with two locally sourced chip collection systems on 54 ha of coppiced willow harvests in New York State. Harvesting and collection equipment was tracked for 153 loads over 10 days of harvesting using GPS data loggers. Effective material capacities (C m) increased linearly with standing biomass up to 40 to 45 Mgwet ha−1 because ground speed was limited by ground conditions. This relationship changed dramatically with standing biomass in the 40–90 Mgwet ha−1 range, where C m plateaued between 70 and 90 Mgwet h−1 and was limited by crop conditions and harvester capacity. The relationship between standing biomass and the harvester’s C m will probably change under different crop and ground conditions. The size of the harvester and the experience of the operator are other factors. This nonlinear relationship will impact cost and optimization modeling SRWC systems. Improperly sized headland and long haul distances impeded the performance of locally sourced collection systems resulting in a 33 % decrease in C m from the field to the headlands, and 66 % from the field to short-term storage as biomass moves through the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. USDOE (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  2. El Bassam N (2010) Handboook for bioenergy crops. Earthscan, London, p 544

  3. Hess R, Wright C, Kenney KL, Searcy EM (2009) Uniform-format solid feedstock supply system: A commodity-scale design to produce an infrastructure-compatible bulk solid from lignocellulosic biomass. https://inlportal.inl.gov/portal/server.pt/gateway/PTARGS_0_3647_96127_0_0_18/Uniform-FormatFeedstockSupplySystemDRAFT2.pdf. Accessed 21 May 2014

  4. Smith WB, Miles PD, Perry CH, Pugh SA (2009) Forest Resources of the United States, 2007. General Technical Report WO-78. USDA Forest Service, Washington Office, 336p. http://www.fs.fed.us/nrs/pubs/gtr/gtr_wo78.pdf

  5. Caputo J, Balogh SB, Volk TA et al (2013) Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass (Salix spp.) crops. Bioenergy Res. doi:10.1007/s12155-013-9347-y

    Google Scholar 

  6. Lippke B, Gustafson R, Venditti R et al (2012) Comparing life-cycle carbon and energy impacts for biofuel, wood product, and forest management alternatives. For Prod J 62:247–257

    CAS  Google Scholar 

  7. Abrahamson LP, Volk TA, Smart LP (2010) Shrub willow producers handbook. SUNY-ESF. Syracuse, NY. http://www.esf.edu/willow/documents/ProducersHandbook.pdf. Accessed 21 May 2014

  8. Volk TA, Castellano P, Abrahamson LP (2010) Reducing the cost of willow biomass by improving willow harvest efficiency and reducing harvesting costs. New York State Energy Research and Development Authority, Albany

    Google Scholar 

  9. Buchholz T, Volk TA (2011) Improving the profitability of willow crops—identifying opportunities with a crop budget model. Bioenergy Res 4:85–95. doi:10.1007/s12155-010-9103-5

    Article  Google Scholar 

  10. Heller MC, Keoleian GA, Volk TA (2003) Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenergy 25:147–165. doi:10.1016/S0961-9534(02)00190-3

    Article  CAS  Google Scholar 

  11. Van der Meijden GPM, Gigler JK (1995) Harvesting techniques and logistics of short rotation energy forestry - a descriptive study on harvest and transport systems in Salix production currently used in Sweden. JTI Raport 200. Swedish Institute of Agricultural Engineering. Uppsala, Sweden, p 49

  12. Ehlert D, Pecenka R (2013) Harvesters for short rotation coppice: current status and new solutions. Int J For Eng 24:170–182. doi:10.1080/14942119.2013.852390

    Google Scholar 

  13. Savoie P, Herbert PL, Robert FS (2013) Harvest of short rotation woody crops with small to medium size forage harvesters. Pap. Number 131620174

  14. Savoie P, Herbert PL, Robert FS (2014) Novel willow header adapted to a pull-type forage harvester: development and field experiments. ASABE, Montreal, pp 1–14

    Google Scholar 

  15. Miao Z, Shastri Y, Grift TE et al (2012) Lignocellulosic biomass feedstock transportation alternatives, logistics, equipment configurations, and modeling. Biofuels Bioprod Biorefining 6:351–362

    Article  CAS  Google Scholar 

  16. Berhongaray G, El Kasmioui O, Ceulemans R (2013) Comparative analysis of harvesting machines on an operational high-density short rotation woody crop (SRWC) culture: one-process versus two-process harvest operation. Biomass Bioenergy 58:333–342. doi:10.1016/j.biombioe.2013.07.003

    Article  Google Scholar 

  17. Kenney KL, Smith WA, Gresham GL, Westover TL (2013) Understanding biomass feedstock variability. Biofuel 4:111–127. doi:10.4155/bfs.12.83

    Article  CAS  Google Scholar 

  18. Sharma B, Ingalls RG, Jones CL, Khanchi A (2013) Biomass supply chain design and analysis: basis, overview, modeling, challenges, and future. Renew Sustain Energy Rev 24:608–627. doi:10.1016/j.rser.2013.03.049

    Article  Google Scholar 

  19. Johnson DR, Willis HH, Curtright AE et al (2011) Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production. Biomass Bioenergy 35:2619–2626. doi:10.1016/j.biombioe.2011.02.046

    Article  CAS  Google Scholar 

  20. ASABE (2011) Agricultural Machinery Management - ASAE Standards S496.3 FEB2006 (2011). 1–7

  21. Serapiglia MJ, Cameron KD, Stipanovic AJ et al (2012) Yield and woody biomass traits of novel shrub willow hybrids at two contrasting sites. Bioenergy Res 6:533–546. doi:10.1007/s12155-012-9272-5

    Article  Google Scholar 

  22. Briggs RD, White EH, Yawney HW (1986) Sampling trailers for estimating moisture content and nutrient content for hardwood chips. North J Appl For 3:156–158

    Google Scholar 

  23. ASABE (2012) Moisture measurement - ANSI/ASABE Standards S358.2. 1

  24. Hunt D (2001) Farm power and machinery management, 10th edn. Iowa State Press, Ames Iowa, p 376

  25. ASABE (2011) Uniform terminology for agricultural machinery management - ASABE Standards S495.1 NOV2005(R2011). 2

  26. Schabenberger O, Pierce F (2002) Contemporary statistical models for the plant and soil sciences. CRC Press, New York

    Google Scholar 

  27. Winkelmann R (1996) A count data model for gamma waiting times. Stat Pap 37:177–187

    Article  Google Scholar 

  28. Wang M, Rennolls K (2005) Tree diameter distribution modelling: introducing the logit–logistic distribution. Can J For Res 35:1305–1313

    Article  Google Scholar 

  29. Montogomory DC, Peck EA, Vining GG (2001) Introduction to linear regression analysis, 3rd edn. Wiley Interscience, New York, p 672

  30. Schweier J, Becker G (2012) New Holland forage Harvester’s productivity in short rotation coppice: evaluation of field studies from a German perspective. Int J For Eng 23:82–88. doi:10.1080/14942119.2012.10739964

    Google Scholar 

  31. Eisenbies MH, Volk TA, Abrahamson LP, et al. (in press) Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header - Final Report. Department of Energy, Washington DC

  32. Eisenbies MH, Abrahamson LP, Castellano P, et al. (2012) Development and deployment of a short rotation woody crops harvesting system based on a New Holland forage harvester and SRC woody crop header. Proc. 2012 Sun Grant Natl. Conf.

  33. Willebrand E, Ledin S, Verijst T (1993) Willow coppice systems in short rotation forestry: effects of plant spacing, rotation length and clonal composition on biomass production. Biomass Bioenergy 4:323–331

    Article  Google Scholar 

  34. Sokhansanj S, Kumar A, Turhollow A (2006) Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass Bioenergy 30:838–847. doi:10.1016/j.biombioe.2006.04.004

    Article  Google Scholar 

  35. CRL (2002) Growers guide to short rotation coppice. Coppice Resources Ltd., Doncaster Airport, England

    Google Scholar 

  36. DEFA (2004) Growing short rotation coppice. Department of Environment Food and Rural Affairs, London

    Google Scholar 

  37. Lin Y, Newes E, Bush B et al (2013) Biomass scenario model documentation: data and references. Technical Report NREL/TP-6A20-57831. National Renewable Energy Laboratory, Department of Energy, Golden, CO. http://www.nrel.gov/docs/fy13osti/57831.pdf. Accessed 21 May 2014

Download references

Acknowledgments

This work was made possible by the funding under award #EE0001037 from the US Department of Energy Bioenergy Technologies Office, New York State Research and Development Authority (NYSERDA), and the Empire State Development Division of Science, Technology and Innovation (NYSTAR). We would like to thank Larry Abrahamson, Andrew Lewis, and Penelope Pooler for their contributions to this project. We would also like to thank the anonymous journal reviewers for their valuable feedback to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Eisenbies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisenbies, M.H., Volk, T.A., Posselius, J. et al. Evaluation of a Single-Pass, Cut and Chip Harvest System on Commercial-Scale, Short-Rotation Shrub Willow Biomass Crops. Bioenerg. Res. 7, 1506–1518 (2014). https://doi.org/10.1007/s12155-014-9482-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9482-0

Keywords

Navigation