Skip to main content

Advertisement

Log in

Virtual screening for potential inhibitors of homology modeled Leptospira interrogans MurD ligase

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

The life-threatening infections caused by Leptospira serovars remain a global challenge since long time. Prevention of infection by controlling environmental factors being difficult to practice in developing countries, there is a need for designing potent anti-leptospirosis drugs. ATP-dependent MurD involved in biosynthesis of peptidoglycan was identified as common drug target among pathogenic Leptospira serovars through subtractive genomic approach. Peptidoglycan biosynthesis pathway being unique to bacteria and absent in host represents promising target for antimicrobial drug discovery. Thus, MurD 3D models were generated using crystal structures of 1EEH and 2JFF as templates in Modeller9v7. Structural refinement and energy minimization of the model was carried out in Maestro 9.0 applying OPLS-AA 2001 force field and was evaluated through Procheck, ProSA, PROQ, and Profile 3D. The active site residues were confirmed from the models in complex with substrate and inhibitor. Four published MurD inhibitors (two phosphinics, one sulfonamide, and one benzene 1,3-dicarbixylic acid derivative) were queried against more than one million entries of Ligand.Info Meta-Database to generate in-house library of 1,496 MurD inhibitor analogs. Our approach of virtual screening of the best-ranked compounds with pharmacokinetics property prediction has provided 17 novel MurD inhibitors for developing anti-leptospirosis drug targeting peptidoglycan biosynthesis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chopra I, Schofield C, Everett M, O'Neill A, Miller K, Wilcox M, Frère JM, Dawson M, Czaplewski L, Urleb U, Courvalin P (2008) Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement. Lancet Infect Dis 8:133–139

    Article  Google Scholar 

  2. World Health Organization (1999) Leptospirosis worldwide. Wkly Epidemiol Rec 74:237–242

    Google Scholar 

  3. Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, Lovett MA, Levett PN, Gilman RH, Willig MR, Gotuzzo E, Vinetz JM (2003) Leptospirosis: a zoonotic disease of global importance. The Lancet Infect Dis 3:757–771

    Article  Google Scholar 

  4. Trueba G, Zapata S, Madrid K, Cullen P, Haake D (2004) Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. Int Microbiol 7:35–40

    Google Scholar 

  5. Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14:296–326

    Article  CAS  Google Scholar 

  6. Guidugli F, Castro AA, Atallah (2000) Antibiotics for preventing leptospirosis. Cochrane Database Syst Rev 4:CD001305

    Google Scholar 

  7. Wang Z, Jin L, Wegrzyn A (2007) Leptospirosis vaccines. Microb Cell Fact 6:39

    Article  Google Scholar 

  8. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207

    Article  CAS  Google Scholar 

  9. Vollmer W, Blanot D, Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    Article  CAS  Google Scholar 

  10. Van Heijeinoot J (2001) Recent advances in the formation of bacterial peptidoglycan monomer unit. Nat Prod Rep 18:503–519

    Article  Google Scholar 

  11. Bouhss A, Dementin S, van Heijenoort J, Parquet C, Blanot D (2002) MurC and MurD synthetases of peptidoglycan biosynthesis: borohydride trapping of acyl-phosphate intermediates. Methods Enzymol 354:189–196

    Article  CAS  Google Scholar 

  12. El Zoeiby A, Sanschagrin F, Levesque RC (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47:1–12

    Article  CAS  Google Scholar 

  13. Strancar K, Blanot D, Gobec S (2006) Design, synthesis and structure-activity relationships of new phosphinate inhibitors of MurD. Bioorg Med Chem Lett 16:343–348

    Article  CAS  Google Scholar 

  14. Humljan J, Kotnik M, Contreras-Martel C, Blanot D, Urleb U, Dessen A, Solmajer T, Gobec S (2008) Novel naphthalene-N-sulfonyl-D-glutamic acid derivatives as inhibitors of MurD, a key peptidoglycan biosynthesis enzyme. J Med Chem 51:7486–7494

    Article  CAS  Google Scholar 

  15. Perdih A, Kovac A, Wolber G, Blanot D, Gobec S, Solmajer T (2009) Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg Med Chem Lett 19:2668–2673

    Article  CAS  Google Scholar 

  16. Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159

    Article  CAS  Google Scholar 

  17. Maestro 9.0, versuib 70110, Schrodinger, New York

  18. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and Analysis Tools on the ExPASy Server. In: John M. Walker (ed) The Proteomics Protocols Handbook. Humana Press, pp 571–607

  19. Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucleic Acids Res 33:W36–W38

    Article  CAS  Google Scholar 

  20. Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26:320–322

    Article  CAS  Google Scholar 

  21. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  Google Scholar 

  22. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  23. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  24. Bertrand JA, Fanchon E, Martin L, Chantalat L, Auger G, Blanot D, van Heijenoort J, Dideberg O (2000) Open structures of MurD: domain movements and structural similarities with folylpolyglutamate synthetase. J Mol Biol 301:1257–1266

    Article  CAS  Google Scholar 

  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  26. Kotnik M, Humljan J, Contreras-Martel C, Oblak M, Kristan K, Hervé M, Blanot D, Urleb U, Gobec S, Dessen A, Solmajer T (2007) Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. J Mol Biol 370:107–115

    Article  CAS  Google Scholar 

  27. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  28. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  29. Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086

    Article  CAS  Google Scholar 

  30. Castrignano T, De Meo PD, Cozzetto D, Talamo IG, Tramontano A (2006) The PMDB protein model database. Nucleic Acids Res 34:D306–D309

    Article  CAS  Google Scholar 

  31. von Grotthuss M, Pas J, Rychlewski L (2003) Ligand-Info, searching for similar small compounds using index profiles. Bioinformatics 19:1041–1042

    Article  Google Scholar 

  32. Plewczynski D, Hoffmann M, von Grotthuss M, Ginalski K, Rychewski L (2007) In silico prediction of SARS protease inhibitors by virtual high throughput screening. Chem Biol Drug Des 69:269–279

    Article  CAS  Google Scholar 

  33. Brooks WH, Daniel KG, Sung SS, Guida WC (2008) Computational validation of the importance of absolute stereochemistry in virtual screening. J Chem Inf Model 48:639–645

    Article  CAS  Google Scholar 

  34. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  35. Faine S, Adler B, Bolin C, Perolat P (1999) Appendix 2 Species and serovar list. In: Leptospira and leptospirosis, 2nd edn. Medisci, Melbourne, Australia, pp 138–139

  36. Smith CS (2006) Structure, function and dynamics in the Mur family of bacterial cell wall ligases. J Mol Biol 362:640

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from DBT, Ministry of Science and Technology, Government of India, New Delhi. We are grateful to Dr. B. Vengamma, Director, for providing constant support and encouragement for research at SVIMS Bioinformatics Centre, where this work has been performed. We thank Prof. S. Ramakumar, IISc., Bangalore for rendering critical valuable suggestions on the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amineni Umamaheswari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umamaheswari, A., Pradhan, D. & Hemanthkumar, M. Virtual screening for potential inhibitors of homology modeled Leptospira interrogans MurD ligase. J Chem Biol 3, 175–187 (2010). https://doi.org/10.1007/s12154-010-0040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-010-0040-8

Keywords

Navigation