Skip to main content

Advertisement

Log in

Radiotherapy planning of lymphomas: role of metabolic imaging with PET/CT

  • Review Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Accurate target delineation is an absolute requirement for modern radiotherapy planning. Historically, structural imaging modalities have been used for this purpose, but there is a considerable role for functional imaging with PET/CT to contribute in this area. PET/CT’s role in radiotherapy planning is well established and its use is indispensable in the clinical management of the lymphomas, particularly Hodgkin Lymphoma. A crucial use of PET/CT is as a baseline scan for delineation of the initial lymphomatous involvement, since this will determine the contouring of the gross-, clinical- and planning-target volumes (GTV, CTV, PTV). This article reviews the principles of contemporary radiotherapy, examines the evidence for the contribution of PET/CT to radiotherapy planning in lymphoma and the practicalities and challenges of applying this powerful technology to this situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and material in the manuscript are publicly available.

References

  1. McKay MJ, Langlands AO. The American ‘Patterns of Care’ study: a model for the assessment of the quality of patient care in radiation oncology. Australas Radiol. 1990;34:306–11.

    Article  CAS  PubMed  Google Scholar 

  2. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44:127–37.

    Article  CAS  PubMed  Google Scholar 

  3. McKay MJ, Taubman KL, Foroudi F, Lee ST, Scott AM. Molecular imaging for radiotherapy planning of adult cancers: current status and expanding applications. Int J Radiat Oncol Biol Phys. 2018;102:783–91.

    Article  PubMed  Google Scholar 

  4. Lee ST, Scott AM. The current role of PET/CT in radiotherapy planning. Curr Radiopharm. 2015;8:38–44.

    Article  CAS  PubMed  Google Scholar 

  5. Unterrainer M, Eze C, Ilhan H, Marschner S, Roengvoraphoj O, Schmidt-Hegemann N, et al. Recent advances of PET imaging in clinical radiation oncology. Radiat Oncol. 2020;15:88–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheson BD. PET/CT in lymphoma: current overview and future directions. Semin Nucl Med. 2018;48:76–81.

    Article  PubMed  Google Scholar 

  7. Wirth A, Mikhaeel NG, Aleman BMP, Pinnix CC, Constine LS, Ricardi U, et al. Involved site radiation therapy in adult lymphomas: an overview of international lymphoma radiation oncology group guidelines. Int J Radiat Oncol Biol Phys. 2020;107:909–33.

    Article  PubMed  Google Scholar 

  8. Specht L, Yahalom J, Illidge T, Berthelsen AK, Constine LS, Eich HT, et al. ILROG. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89:854–62.

    Article  PubMed  Google Scholar 

  9. Illidge T, Specht L, Yahalom J, Aleman B, Berthelsen AK, Constine L, et al. International Lymphoma Radiation Oncology Group. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2014;89:49–58.

    Article  PubMed  Google Scholar 

  10. MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol. 2009;91:85–94.

    Article  PubMed  Google Scholar 

  11. Eich HT, Müller RP, Engenhart-Cabillic R, Lukas P, Schmidberger H, Staar S, et al. German Hodgkin Study Group. Involved-node radiotherapy in early-stage Hodgkin’s lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG). Strahlenther Onkol. 2008;184:406–10.

    Article  PubMed  Google Scholar 

  12. Sprung C, Matthews L, McKay M. DNA repair defects: connecting carcinogenesis with radiosensitivity. Today’s Life Sci. 2002;14:40–4.

    Google Scholar 

  13. Aznar MC, Girinsky T, Berthelsen AK, Aleman B, Beijert M, Hutchings M, et al. Interobserver delineation uncertainty in involved-node radiation therapy (INRT) for early-stage Hodgkin lymphoma: on behalf of the Radiotherapy Committee of the EORTC lymphoma group. Acta Oncol. 2017;56:608–13.

    Article  PubMed  Google Scholar 

  14. Goodman KA, Toner S, Hunt M, Wu EJ, Yahalom J. Intensity-modulated radiotherapy for lymphoma involving the mediastinum. Int J Radiat Oncol Biol Phys. 2005;62:198–206.

    Article  PubMed  Google Scholar 

  15. Xu LM, Li YX, Fang H, Jin J, Wang W-H, Wang S-L, et al. Dosimetric evaluation and treatment outcome of intensity modulated radiation therapy after doxorubicin-based chemotherapy for primary mediastinal large B-cell lymphoma. Int J Radiat Oncol Biol Phys. 2013;85:1289–95.

    Article  PubMed  Google Scholar 

  16. Chargari C, Cosset JM. The issue of low doses in radiation therapy and impact on radiation-induced secondary malignancies. Bull Cancer. 2013;100:1333–42.

    Article  PubMed  Google Scholar 

  17. Aznar MC, Maraldo MV, Schut DA, Lundemann M, Brodin NP, Vogelius IR, et al. Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both? Int J Radiat Oncol Biol Phys. 2015;92:169–74.

    Article  PubMed  Google Scholar 

  18. Pepper NB, Oertel M, Kittel C, Kröger KJ, Elsayad K, Haverkamp U, et al. Impact of radiation techniques on lung toxicity in patients with mediastinal Hodgkin’s lymphoma. Strahlenther Onkol. 2021;197:56–62.

    Article  PubMed  Google Scholar 

  19. Tomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.

    Article  Google Scholar 

  20. Lin A, Hahn SM. Hypoxia imaging markers and applications for radiation treatment planning. Sem Nucl Med. 2012;42:343–52.

    Article  Google Scholar 

  21. Conson FR, Del Vecchio MS. PET/CT in radiation oncology. Sem Oncol. 2019;46:202–9.

    Article  Google Scholar 

  22. Lynch RC, Advani RH. Risk-adapted treatment of advanced Hodgkin Lymphoma with PET-CT. Am Soc Clin Oncol Educ Book. 2016;35:e376–85.

    Article  PubMed  Google Scholar 

  23. Eng T, Ha CS. Image-guided radiation therapy in lymphoma management. Radiat Oncol J. 2015;33:161–71.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Urwin R, Barrington SF, Mikhaeel NG. Role of PET imaging in adaptive radiotherapy for lymphoma. Q J Nucl Med Mol Imag. 2018;62:411–9.

    Google Scholar 

  25. Sickinger MT, von Tresckow B, Kobe C, Borchmann P, Engert A, Skoetz N. PET-adapted omission of radiotherapy in early stage Hodgkin lymphoma-a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2016;101:86–92.

    Article  PubMed  Google Scholar 

  26. Barrington S, Trotman J. The role of PET in the first-line treatment of the most common subtypes of non-Hodgkin lymphoma. Lancet Haematol. 2021;8:e80-93.

    Article  PubMed  Google Scholar 

  27. Macchia G, Deodato F, Cilla S, Cammelli S, Guido A, Ferioli M, et al. Volumetric modulated arc therapy for treatment of solid tumors: current insights. Oncol Targets Ther. 2017;10:3755–72.

    Article  Google Scholar 

  28. Besson N, Pernin V, Zefkili S, Kirova YM. Evolution of radiation techniques in the treatment of mediastinal lymphoma: from 3D conformal radiotherapy (3DCRT) to intensity-modulated RT (IMRT) using helical tomotherapy (HT): a single-centre experience and review of the literature. Br J Radiol. 2016;89:20150409.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moghbel MC, Mittra E, Gallamini A, Niederkohr R, Chen DL, Zukotynski K, et al. Response assessment criteria and their applications in lymphoma. J Nucl Med. 2017;58:13–22.

    Article  PubMed  Google Scholar 

  30. Girinsky T, Ghalibafian M, Bonniaud G, Bayla A, Magne N, Ferreira I. Is FDG-PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother Oncol. 2007;85:178–86.

    Article  PubMed  Google Scholar 

  31. Yeoh KW, Mikhaeel NG. Are we ready for positron emission tomography/computed tomography-based target volume definition in lymphoma radiation therapy? Int J Radiat Oncol Biol Phys. 2013;85:14–20.

    Article  PubMed  Google Scholar 

  32. Girinsky T, Aupérin A, Ribrag V, Elleuch M, Fermé C, Bonniaud G, et al. Role of FDG-PET in the implementation of involved-node radiation therapy for Hodgkin Lymphoma patients. Int J Radiat Oncol Biol Phys. 2014;89:1047–52.

    Article  PubMed  Google Scholar 

  33. Raemaekers JM, André MP, Federico M, Girinsky T, Oumedaly R, Brusamolino E, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: Clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014;32:1188–94.

    Article  PubMed  Google Scholar 

  34. Pommier P, Dussart S, Girinsky T, Chabaud S, Lagrange JL, Nguyen TD, et al. Impact of 18F-fluoro-2-deoxyglucose positron emission tomography on treatment strategy and radiotherapy planning for stage I-II Hodgkin disease: a prospective multicenter study. Int J Radiat Oncol Biol Phys. 2011;79:823–8.

    Article  PubMed  Google Scholar 

  35. Terezakis SA, Schöder H, Kowalski A, McCann P, Lim R, Turlakov A, et al. A prospective study of 18 FDG-PET with CT coregistration for radiation treatment planning of lymphomas and other hematologic malignancies. Int J Radiat Oncol Biol Phys. 2014;89:376–83.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bird D, Patel C, Scarsbrook AF, Cosgrove V, Thomas E, Gilson D, et al. Evaluation of clinical target volume expansion required for involved site neck radiotherapy for lymphoma to account for the absence of a pre-chemotherapy PET-CT in the radiotherapy treatment position. Radiother Oncol. 2017;124:161–7.

    Article  PubMed  Google Scholar 

  37. Hutchings M, Loft A, Hansen M, Berthelsen AK, Specht L. Clinical impact of FDG-PET/CT in the planning of radiotherapy for early-stage Hodgkin lymphoma. Eur J Haematol. 2007;78:206–12.

    Article  PubMed  Google Scholar 

  38. Lee YK, Cook G, Flower MA, Rowbottom C, Shahidi M, Sharma B, et al. Addition of 18F-FDG-PET scans to radiotherapy planning of thoracic lymphoma. Radiother Oncol. 2004;73:277–83.

    Article  PubMed  Google Scholar 

  39. Martelli M, Ceriani L, Zucca E, Zinzani PL, Ferreri AJ, Vitolo U, et al. [18F]fluorodeoxyglucose positron emission tomography predicts survival after chemoimmunotherapy for primary mediastinal large B-cell lymphoma: results of the International Extranodal Lymphoma Study Group IELSG-26 Study. J Clin Oncol. 2014;32:1769–75.

    Article  PubMed  Google Scholar 

  40. Campbell BA, Connors JM, Gascoyne RD, Morris WJ, Pickles T, Sehn LH. Limited-stage diffuse large B-cell lymphoma treated with abbreviated systemic therapy and consolidation radiotherapy: involved-field versus involved-node radiotherapy. Cancer. 2012;118:4156–65.

    Article  PubMed  Google Scholar 

  41. David SP, Rees HS, MacManus MP. Use of prechemotherapy positron emission tomography-CT imaging, acquired in the treatment position, to help plan involved nodal radiotherapy for a patient with diffuse large B-cell lymphoma. J Med Imaging Radiat Oncol. 2011;55:236–41.

    Article  PubMed  Google Scholar 

  42. Wirth A, Foo M, Seymour JF, MacManus MP, Hicks RJ. Impact of [18f] fluorodeoxyglucose positron emission tomography on staging and management of early-stage follicular non-hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2008;71(1):213–9.

    Article  PubMed  Google Scholar 

  43. Yahalom J. Radiotherapy of follicular lymphoma: updated role and new rules. Curr Treat Options Oncol. 2014;15:262–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brady JL, Binkley MS, Hajj C, Chelius M, Chau K, Balogh A, et al. Definitive radiotherapy for localized follicular lymphoma staged by 18 F-FDG PET-CT: a collaborative study by ILROG. Blood. 2019;133:237–45.

    Article  CAS  PubMed  Google Scholar 

  45. Metser U, Hussey D, Murphy G. Impact of (18)F-FDG PET/CT on the staging and management of follicular lymphoma. Br J Radiol. 2014;87:20140360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pyo J, Won Kim K, Jacene HA, Sakellis CG, Brown JR, Van den Abbeele AD. End-therapy positron emission tomography for treatment response assessment in follicular lymphoma: a systematic review and meta-analysis. Clin Cancer Res. 2013;19(23):6566–77.

    Article  CAS  PubMed  Google Scholar 

  47. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet P-Y, Müller-Quernheim J. Sarcoidosis. Lancet. 2014;383(9923):1155–67.

    Article  PubMed  Google Scholar 

  49. Maccarone MT. FDG-PET scan in sarcoidosis: clinical and imaging indications. Curr Med Imaging Rev. 2019;15(1):4–9.

    Article  PubMed  Google Scholar 

  50. Hwang AB, Bacharach SL, Yom SS, Weinberg VK, Quivey JM, Franc BL, Xia P. Can positron emission tomography (PET) or PET/Computed Tomography (CT) acquired in a nontreatment position be accurately registered to a head-and-neck radiotherapy planning CT? Int J Radiat Oncol Biol Phys. 2009;73:578–84.

    Article  PubMed  Google Scholar 

  51. Firouzian A, Matthew D, Kelly MD, Declerck JM. Insight on automated lesion delineation methods for PET data. EJNMMI Res. 2014;4:69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kriz J, Spickermann M, Lehrich P, Schmidberger H, Reinartz G, Eich H, Haverkamp U. Breath-hold technique in conventional APPA or intensity-modulated radiotherapy for Hodgkin’s lymphoma: comparison of ILROG IS-RT and the GHSG IF-RT. Strahlenther Onkol. 2015;191:717–25.

    Article  PubMed  Google Scholar 

  53. Paumier A, Ghalibafian M, Gilmore J, Beaudre A, Blanchard P, el Nemr M, et al. Dosimetric benefits of intensity-modulated radiotherapy combined with the deep-inspiration breath-hold technique in patients with mediastinal Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys. 2012;82:1522–7.

    Article  PubMed  Google Scholar 

  54. Martelli M, Ferreri AJ, Agostinelli C, Di Rocco A, Pfreundschuh M, Pileri SA. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 2013;87:146–71.

    Article  PubMed  Google Scholar 

  55. Harris LJ, Patel K, Martin M. Novel therapies for relapsed or refractory diffuse large B-cell lymphoma. Int J Mol Sci. 2020;21:8553.

    Article  CAS  PubMed Central  Google Scholar 

  56. Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38:473–88.

    Article  CAS  PubMed  Google Scholar 

  57. Kahle XU, Montes de Jesus FM, Glaudemans AW, Marjolijn N, Hooge L, Jorritsma-Smit A, et al. Molecular imaging in lymphoma beyond 18 F-FDG-PET: understanding the biology and its implications for diagnostics and therapy. Lancet Haematol. 2020;7:e479–89.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Professor Andrew Wirth for thoughtful comments on the manuscript.

Funding

No funding sources.

Author information

Authors and Affiliations

Authors

Contributions

MM: conception of idea; drafting and editing the manuscript; creating figures; approval of final manuscript; KT: conception of idea; editing the manuscript; approval of final manuscript; SL: provision of some of the figures; editing the manuscript; approval of final manuscript; AS: conception of idea; editing the manuscript; approval of final manuscript.

Corresponding author

Correspondence to Michael J. McKay.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not required.

Consent to participate

Not required.

Consent for publication

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKay, M.J., Taubman, K.L., Lee, S. et al. Radiotherapy planning of lymphomas: role of metabolic imaging with PET/CT. Ann Nucl Med 36, 162–171 (2022). https://doi.org/10.1007/s12149-021-01703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01703-7

Keywords

Navigation