Skip to main content

Advertisement

Log in

First clinical assessment of [18F]MC225, a novel fluorine-18 labelled PET tracer for measuring functional P-glycoprotein at the blood–brain barrier

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

5-(1-(2-[18F]fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen ([18F]MC225) is a selective substrate for P-glycoprotein (P-gp), possessing suitable properties for measuring overexpression of P-gp in the brain. This is the first-in-human study to examine safety, radiation dosimetry and P-gp function at the blood–brain barrier (BBB) of [18F]MC225 in healthy subjects.

Methods

[18F]MC225 biodistribution and dosimetry were determined in 3 healthy male subjects, using serial 2 h and intermittent 4 and 6 h whole-body PET scans acquired after [18F]MC225 injection. Dynamic [18F]MC225 brain PET (90 min) was obtained in 5 healthy male subjects. Arterial blood was sampled at various time intervals during scanning and the fraction of unchanged [18F]MC225 in plasma was determined. T1-weighted MRI was performed for anatomical coregistration. Total distribution volume (VT) was estimated using 1- and 2-tissue-compartment models (1-TCM and 2-TCM, respectively). VT was also estimated using the Logan graphical method (Logan plot) (t* = 20 min). Surrogate parameters without blood sampling (area-under the curve [AUC] of regional time–activity curves [TACs] and negative slope of calculated TACs) were compared with the VT values.

Results

No serious adverse events occurred throughout the study period. Although biodistribution implied hepatobiliary excretion, secretion of radioactivity from liver to small intestine through the gallbladder was very slow. Total renal excreted radioactivity recovered during 6 h after injection was < 2%ID. Absorbed dose was the highest in the pancreas (mean ± SD, 203 ± 45 μGy/MBq) followed by the liver (83 ± 11 μGy/MBq). Mean effective dose with and without urination was 17 ± 1 μSv/MBq. [18F]MC225 readily entered the brain, distributing homogeneously in grey matter regions. 2-TCM provided lower Akaike information criterion scores than did 1-TCM. VT estimated by Logan plot was well correlated with that of 2-TCM (r2 > 0.9). AUCs of TACs were positively correlated with VT (2-TCM) values (r2: AUC0-60 min = 0.61, AUC0-30 min = 0.62, AUC30-60 min = 0.59, p < 0.0001). Negative slope of SUV TACs was negatively correlated with VT (2-TCM) values (r2 = 0.53, p < 0.0001).

Conclusions

This initial evaluation indicated that [18F]MC225 is a suitable and safe PET tracer for measuring P-gp function at the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Terasaki T, Ohtsuki S. Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: an overview of biology, and methodology. NeuroRx. 2005;2:63–72.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Giacomini KM, Huang S-M. Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther. 2013;94:3–9.

    Article  CAS  PubMed  Google Scholar 

  3. Graff CL, Pollack GM. Drug transporter at the blood–brain barrier and the choroid plexus. Curr Drug Metab. 2004;5:95–108.

    Article  CAS  PubMed  Google Scholar 

  4. Löscher W, Potschka H. Drug resistance in brain disease and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.

    Article  CAS  PubMed  Google Scholar 

  5. Feldmann M, Koepp M. ABC transporter and drug resistance in patients with epilepsy. Curr Pharm Des. 2016;22:5793–807.

    Article  CAS  PubMed  Google Scholar 

  6. Ilyas-Feldmann M, Asselin M-C, Wang S, McMahon A, Anton-Rodriguez A, Brown G, et al. P-glycoprotein overactivity in epileptogenic developmental lesions measured in vivo using (R)-[11C]verapamil PET. Epilepsia. 2020;61:1472–80.

    Article  CAS  PubMed  Google Scholar 

  7. Volk HA, Löscher W. Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain. 2005;128:1358–68.

    Article  PubMed  Google Scholar 

  8. O’Brien FE, Clarke G, Fitzgerald P, Dinan TG, Griffin BT, Cryan JF. Inhibition of P-glycoprotein enhances transport of imipramine across the blood-brain barrier: microdialysis studies in conscious freely moving rats. Br J Pharmacol. 2012;166:1333–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. de Klerk OL, Willemsen AT, Roosink M, Bartels AL, Hendrikse NH, Bosker FJ, et al. Locally increased P-glycoprotein function in major depression: a PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood–brain barrier. Int J Neuropsychopharmacol. 2009;12:895–904.

    Article  CAS  PubMed  Google Scholar 

  10. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-protease inhibitors. J Clin Invest. 1998;101:289–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chai AB, Leung GKF, Callaghan R, Gelissen IC. P-glycoprotein: a role in the export of amyloid-β in Alzheimer’s disease? FEBS J. 2020;287:612–25.

    Article  CAS  PubMed  Google Scholar 

  12. Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B, et al. Activity of p-glycoprotein, a β-amyloid transporter at the blood–brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med. 2014;55:1106–11.

    Article  CAS  PubMed  Google Scholar 

  13. van Assema DME, Lubberink M, Bauer M, van der Filer WM, Schuit RC, Windhorst AD, et al. Blood–brain barrier P-glycoprotein function in Alzheimer’s disease. Brain. 2012;135:181–9.

    Article  PubMed  Google Scholar 

  14. Bartels AL, Willemsen ATM, Kortekaas R, de Jong BM, de Vries R, de Klerk O, et al. Decreased blood–brain barrier P-glycoprotein function in the progression of Parkinson’s disease PSP and MSA. J Neural Transm (Vienna). 2008;115:1001–9.

    Article  CAS  Google Scholar 

  15. Vautier S, Fernandez C. ABCB1: the role in Parkinson’s disease and pharmacokinetics of antiparkinsonian drugs. Expert Opin Drug Metab Toxicol. 2009;5:1349–58.

    Article  CAS  PubMed  Google Scholar 

  16. Luurtsema G, Elsinga P, Dierckx R, Boellaard R, van Waarde A. PET tracers for imaging of ABC transporters at the blood–brain barrier: principles and strategies. Curr Pharm Des. 2016;22:5779–85.

    Article  CAS  PubMed  Google Scholar 

  17. Raaphorst RM, Windhorst AD, Elsinga PH, Colabufo NA, Lammertsma AA, Luurtsema G. Radiopharmaceuticals for assessing ABC transporters at the blood–brain barrier. Clin Pharmacol Ther. 2015;97:362–71.

    Article  CAS  PubMed  Google Scholar 

  18. Lubberink M. Kinetic models for measuring P-glycoprotein function at the blood-brain barrier with positron emission tomography. Curr Pharm Des. 2016;22:5786–92.

    Article  CAS  PubMed  Google Scholar 

  19. Luurtsema G, Molthoff CFM, Schuit RC, Windhorst AD, Lammertsma AA, Franssen EJF. Evaluation of (R)-[11C]verapamil as PET tracer of P-glycoprotein function in the blood–brain barrier: kinetics and metabolism in the rat. Nucl Med Biol. 2005;32:87–93.

    Article  CAS  PubMed  Google Scholar 

  20. Savolainen H, Windhorst AD, Elsinga PH, Cantore M, Colabufo NA, Willemsen AT, et al. Evaluation of [18F]MC225 as a PET radiotracer for measuring P-glycoprotein function at the blood–brain barrier in rats: kinetics, metabolism, and selectivity. J Cereb Blood Flow Metab. 2017;37:1286–98.

    Article  CAS  PubMed  Google Scholar 

  21. Savolainen H, Cantore M, Colabufo NA, Elsinga PH, Windhorst AD, Luurtsema G. Synthesis and preclinical evaluation of three novel fluorine-18 labeled radiopharmaceuticals for P-glycoprotein PET imaging at the blood–brain barrier. Mol Pharm. 2015;12:2265–75.

    Article  CAS  PubMed  Google Scholar 

  22. García-Varela L, Arif WM, García DV, Kakiuchi T, Ohba H, Harada N, et al. Pharmacokinetic modeling of [18F]MC225 for quantification of the P-glycoprotein function at the blood–brain barrier in non-human primates with PET. Mol Pharm. 2020;17:3477–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. García-Varela L, García DV, Aguiar P, Kakiuchi T, Ohba H, Harada N, et al. Head-to-head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05411-2.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Toyohara J, Sakata M, Tago T, Colabufo NA, Luurtsema G. Automated synthesis, preclinical toxicity, and radiation dosimetry of [18F]MC225 for clinical use: a tracer for measuring P-glycoprotein function at the blood–brain barrier. EJNMMI Res. 2020;10:84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zanotti-Fregonara P, Lammertsma AA, Innis RB. Suggested pathway to assess radiation safety of 18F-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2013;40:1781–3.

    Article  PubMed  Google Scholar 

  26. Toyohara J, Sakata M, Oda K, Ishii K, Ito K, Hiura M, et al. Initial human PET studies of metabotropic glutamate receptor type 1 ligand 11C-ITMM. J Nucl Med. 2013;54:1302–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ito K, Sakata M, Oda K, Wagatsuma K, Toyohara J, Ishibashi K, et al. Comparison of dosimetry between PET/CT and PET alone using 11C-ITMM. Austr Phys Eng Sci Med. 2016;39:177–86.

    Article  Google Scholar 

  28. Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.

    Article  PubMed  Google Scholar 

  29. Kirschner AS, Ice RD, Beierwaltes WH. Radiation dosimetry of 131I–19-iodo-cholesterol: the pitfalls of using tissue concentration data reply. J Nucl Med. 1975;16:248–9.

    CAS  Google Scholar 

  30. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  31. ICRP. The 2007 recommendations of the international commission on radiological protection ICRP publication 103. Ann ICRP. 2007;37:1–332.

    Google Scholar 

  32. Toyohara J, Yamamoto H, Tago T. Searching for diagnostic properties of novel fluorine-18-labeled D-allose. Ann Nucl Med. 2019;33:855–65.

    Article  CAS  PubMed  Google Scholar 

  33. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time–activity measurement applied to [N-11C-methyl]-(–)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.

    Article  CAS  PubMed  Google Scholar 

  34. Auvity S, Caillé F, Marie S, Wimberley C, Bauer M, Langer O, et al. P-Glycoprotein (ABCB1) inhibits the influx and increases the efflux of 11C-metoclopramide across the blood–brain barrier: a PET study on nonhuman primates. J Nucl Med. 2018;59:1609–15.

    Article  CAS  PubMed  Google Scholar 

  35. Tournier N, Bauer M, Picher V, Nics L, Klebermass E-M, Bamminger K, et al. Impact of P-glycoprotein function on the brain kinetics of the weak substrate 11C-metoclopramide assessed with PET imaging in humans. J Nucl Med. 2019;60:985–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Fusi F, Durante M, Gorelli B, Perrone MG, Colabufo NA, Saponara S. MC225, a novel probe for P-glycoprotein PET imaging at the blood–brain barrier: in vitro cardiovascular safety evaluation. J Cardiovasc Pharmacol. 2017;70:405–10.

    Article  CAS  PubMed  Google Scholar 

  37. Brzezińska E. Synthesis and pharmacological properties of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives. Acta Pol Pharm. 1996;53:365–71.

    PubMed  Google Scholar 

  38. ICRP. Radiological protection in biomedical research. ICRP Publication 62. Ann ICRP. 1992;22:1–18.

    Google Scholar 

  39. RDRC Final Guidance: human research without an investigational new drug application. 2010 https://www.fda.gov/media/76286/download. (Accessed Aug 2010).

  40. Staud F, Ceckova M, Micuda S, Pavek P. Expression and function of P-glycoprotein in normal tissues: effect on pharmacokinetics. Methods Mol Biol. 2010;596:199–222.

    Article  CAS  PubMed  Google Scholar 

  41. Bartels A, Kortekaas R, Bart J, Willemsen ATM, de Klerk OL, de Vries JJ, et al. Blood–brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol Aging. 2009;30:1818–24.

    Article  CAS  PubMed  Google Scholar 

  42. Bauer M, Karch R, Neumann F, Abrahim A, Wagner CC, Kletter K, et al. Age dependency of cerebral P-gp function measured with (R)-[11C]verapamil PET. Eur J Clin Pharmacol. 2009;65:941–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD. P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: preliminary observations. Neurobiol Aging. 2015;36:2475–82.

    Article  CAS  PubMed  Google Scholar 

  44. Toornvliet R, van Berckel BNM, Luurtsema G, Lubberink M, Geldof AA, Bosch TM, et al. Effect of age on functional P-glycoprotein in the blood–brain barrier measured by use of (R)-[11C]verapamil and positron emission tomography. Clin Pharmacol Ther. 2006;79:540–8.

    Article  CAS  PubMed  Google Scholar 

  45. van Assema DME, Lubberink M, Boellaard R, Schuit RC, Windhorst AD, Scheltens P, et al. P-glycoprotein function at the blood–brain barrier: effects of age and gender. Mol Imaging Biol. 2012;14:771–6.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kervezee L, Hartman R, van den Berg D-J, Shimizu S, Emoto-Yamamoto Y, Meijer JH, et al. Diurnal variation in P-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain. AAPS J. 2014;16:1029–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Savolainen H, Meerlo P, Elsinga PH, Windhorst AD, Dierckx RAJO, Colabufo NA, et al. P-glycoprotein function in the rodent brain displays a daily rhythm, a quantitative in vivo PET study. AAPS J. 2016;18:1524–31.

    Article  CAS  PubMed  Google Scholar 

  48. Vendelbo J, Olesen RH, Lauridsen JK, Rungby J, Kleinman JE, Hyde TM, et al. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African Americans than Caucasians. Pharmacogenomics J. 2018;18:121–6.

    Article  CAS  PubMed  Google Scholar 

  49. Banks WA. The blood–brain barrier interface in diabetes mellitus: dysfunctions, mechanisms and approaches to treatment. Curr Pharm Des. 2020;26:1438–47.

    Article  CAS  PubMed  Google Scholar 

  50. Strock SE, Hartz AMS, Bernard J, Wolf A, Kachlmeier A, Mahringer A, et al. The concerted amyloid-beta clearance of LRP1 and ABCB1/P-gp across the blood-brain barrier is linked by PICALM. Brain Behav Immun. 2018;73:21–33.

    Article  CAS  Google Scholar 

  51. Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des. 2014;20:1422–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Sita G, Hrelia P, Tarozzi A, Morroni F. P-glycoprotein (ABCB1) and oxidative stress: focus on Alzheimer’s disease. Oxid Med Cell Longev. 2017;2017:7905486.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Alasmari F, Ashby CR Jr, Hall FS, Sari Y, Tiwari AK. Modulation of the ATP-binding cassette B1 transporter by neuro-inflammatory cytokines: role in pathogenesis of Alzheimer’s disease. Front Pharmacol. 2018;9:658.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathway in obesity, diabetes, and Alzheimer’s disease. Biochem Biophys Acta Mol Basis Dis. 2017;1863:1037–45.

    Article  CAS  Google Scholar 

  55. Goldwaser EL, Acharya NK, Sarkar A, Godsey G, Nagele RG. Breakdown of the cerebrovasculature and blood–brain barrier: a mechanistic link between diabetes mellitus and Alzheimer’s disease. J Alzheimers Dis. 2016;54:445–56.

    Article  PubMed  Google Scholar 

  56. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphisms of the human multidrug resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Takano A, Kusuhara H, Suhara T, Ieiri I, Morimoto T, Lee Y-J, et al. Evaluation of in vivo P-glycoprotein function at the blood–brain barrier among MDR1 gene polymorphisms by using 11C-verapamil. J Nucl Med. 2006;47:1427–33.

    CAS  PubMed  Google Scholar 

  58. Brunner M, Langer O, Sunder-Plassmann R, Dobrozemsky G, Müller U, Wadsak W, et al. Influence of functional haplotypes in the drug transporter gene ABCB1 on central nervous system drug distribution in humans. Clin Pharmacol Ther. 2005;78:182–90.

    Article  CAS  PubMed  Google Scholar 

  59. Mossel P, García-Varela L, Arif WM, van der Weijdan CWJ, Boersma HH, Willemsen ATM, et al. Evaluation of P-glycoprotein function at the blood–brain barrier using [18F]MC225 PET. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05419-8.

    Article  PubMed Central  PubMed  Google Scholar 

  60. García-Varela L, Rodríguez-Pérez M, Custoida A, Moraga-Amaro R, Colabufo NA, Aguiar P, et al. In vivo induction of P-glycoprotein function can be measured with [18F]MC225 and PET. Mol Pharm. 2021. https://doi.org/10.1021/acs.molpharmaceut.1c00302.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Masanari Sakai and Mr. Kosuke Nishino for technical support with cyclotron operation and radiosynthesis, Ms. Kimiko Yokoyama and Ms. Kazuko Takagi for care of the subjects during PET scanning and Ms. Airin Onishi for coordination of the clinical study.

Funding

This work was supported in part by Grants-in-Aid for Scientific Research (C) Nos. 18K07658 and 21K07663 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Toyohara.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

All procedures performed in studies involving human participants were approved by the Ministry of Health, Labour and Welfare Certified Clinical Research Review Board, Tokyo Metropolitan Geriatric Medical Center (CRB3180026) and in accordance with the principles of the 1964 Declaration of Helsinki and its later amendments.

Consent to participate

Written informed consent was obtained from all individual participants prior to their inclusion in the study.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 282 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyohara, J., Sakata, M., Ishibashi, K. et al. First clinical assessment of [18F]MC225, a novel fluorine-18 labelled PET tracer for measuring functional P-glycoprotein at the blood–brain barrier. Ann Nucl Med 35, 1240–1252 (2021). https://doi.org/10.1007/s12149-021-01666-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01666-9

Keywords

Navigation