Skip to main content
Log in

Prone-position acquisition of myocardial 123I-metaiodobenzylguanidine (MIBG) SPECT reveals regional uptake similar to that found using 11C-hydroxyephedrine PET/CT

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objectives

123I-metaiodobenzylguanidine (MIBG) has been used to estimate cardiac sympathetic nervous innervation. Heterogeneous MIBG distribution is mainly associated with high physiological MIBG uptakes in the liver. We postulate that prone position acquisition might be especially effective for MIBG, providing for separation from high liver uptake similar to that provided by perfusion single-photon emission computed tomography (SPECT). We investigated whether prone-position acquisition improved MIBG image quality by comparing our results to those acquired using supine MIBG and high-quality 11C-hydroxyephedrine (HED) positron emission tomography/computed tomography PET/CT.

Methods

Ten male volunteers (body mass index (BMI) 22.7 ± 3.4) underwent prone and supine MIBG and HED PET. Relative regional tracer uptake was estimated in early MIBG and HED. Acquired images were divided into 17 segments and were grouped into 4 regions: anterior, inferior, septum, and lateral. For each patient, the inferior/anterior ratio was calculated.

Results

The quality of images acquired using prone MIBG was better than that using supine MIBG (p < 0.05). Inferior and septum relative MIBG uptake was reduced in comparison with anterior or lateral MIBG uptake in the supine position (inferior vs. anterior: 69.0 ± 5.6 vs. 82.3 ± 4.6 %, p < 0.01; septum vs. lateral: 66.2 ± 5.1 vs. 81.9 ± 5.4 %, p < 0.01). Prone MIBG showed a significantly higher inferior/anterior uptake ratio in comparison with supine MIBG (n = 24, seg: 92.2 ± 7.2 vs. 83.6 ± 5.7 %, p < 0.05). However, intergroup differences in uptake ratio were demonstrated among prone and supine MIBG and HED. HED PET/CT still showed a higher uptake ratio in comparison with prone MIBG SPECT (103.9 ± 8.0 vs. 92.2 ± 7.2 %, p < 0.05).

Conclusion

Even in normal male subjects, standard supine MIBG imaging showed reduced inferior and septum uptake. Uptake with prone MIBG imaging showed a significant improvement over that with supine imaging and was closer to uptake for HED PET/CT. This improvement may be the result of preventing intense uptake by the liver. Prone data acquisition may be a viable alternative in evaluating regional abnormalities using MIBG SPECT in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging. 2010;3(1):92–100.

    Article  PubMed  Google Scholar 

  2. Travin MI. Cardiac autonomic imaging with SPECT tracers. J Nucl Cardiol. 2013;20(1):128–43 (quiz 46).

    Article  PubMed  Google Scholar 

  3. Yoshinaga K, Chow BJ, DeKemp RA, Thorn S, Ruddy TD, Davies RA, et al. Application of cardiac molecular imaging using positron emission tomography in evaluation of drug and therapeutics for cardiovascular disorders. Curr Pharm Des. 2005;11(7):903–32.

    Article  PubMed  CAS  Google Scholar 

  4. Zipes DP. Sympathetic stimulation and arrhythmias. N Engl J Med. 1991;325(9):656–7.

    Article  PubMed  CAS  Google Scholar 

  5. Nakajima K, Okuda K, Matsuo S, Yoshita M, Taki J, Yamada M, et al. Standardization of metaiodobenzylguanidine heart to mediastinum ratio using a calibration phantom: effects of correction on normal databases and a multicentre study. Eur J Nucl Med Mol Imaging. 2012;39(1):113–9.

    Article  PubMed  CAS  Google Scholar 

  6. Tamaki N, Yoshinaga K. Novel iodinated tracers, MIBG and BMIPP, for nuclear cardiology. J Nucl Cardiol. 2011;18(1):135–43.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55(24):2769–77.

    Article  PubMed  Google Scholar 

  8. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212–21.

    Article  PubMed  Google Scholar 

  9. Nakata T, Miyamoto K, Doi A, Sasao H, Wakabayashi T, Kobayashi H, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol. 1998;5(6):579–90.

    Article  PubMed  CAS  Google Scholar 

  10. Guidelines for clinical use of cardiac nuclear medicine (JCS 2010)—digest version. Circ J. 2012;76(3):761–7.

  11. Chen J, Garcia EV, Galt JR, Folks RD, Carrio I. Improved quantification in 123I cardiac SPECT imaging with deconvolution of septal penetration. Nucl Med Commun. 2006;27(7):551–8.

    Article  PubMed  Google Scholar 

  12. Verberne HJ, Somsen GA, Povinec P, van Eck-Smit BL, Jacobson AF. Impact of mediastinal, liver and lung (123)I-metaiodobenzylguanidine ((123)I-MIBG) washout on calculated (123)I-MIBG myocardial washout. Eur J Nucl Med Mol Imaging. 2009;36(8):1322–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tsuchimochi S, Tamaki N, Tadamura E, Kawamoto M, Fujita T, Yonekura Y, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med. 1995;36(6):969–74.

    PubMed  CAS  Google Scholar 

  14. Ji SY, Travin MI. Radionuclide imaging of cardiac autonomic innervation. J Nucl Cardiol. 2010;17(4):655–66.

    Article  PubMed  Google Scholar 

  15. Segall GM, Davis MJ. Prone versus supine thallium myocardial SPECT: a method to decrease artifactual inferior wall defects. J Nucl Med. 1989;30(4):548–55.

    PubMed  CAS  Google Scholar 

  16. Nishina H, Slomka PJ, Abidov A, Yoda S, Akincioglu C, Kang X, et al. Combined supine and prone quantitative myocardial perfusion SPECT: method development and clinical validation in patients with no known coronary artery disease. J Nucl Med. 2006;47(1):51–8.

    PubMed  Google Scholar 

  17. Lautamaki R, Tipre D, Bengel FM. Cardiac sympathetic neuronal imaging using PET. Eur J Nucl Med Mol Imaging. 2007;34(Suppl 1):S74–85.

    Article  PubMed  CAS  Google Scholar 

  18. Schwaiger M, Kalff V, Rosenspire K, Haka MS, Molina E, Hutchins GD, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation. 1990;82(2):457–64.

    Article  PubMed  CAS  Google Scholar 

  19. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med. 1979;300(24):1350–8.

    Article  PubMed  CAS  Google Scholar 

  20. Mabuchi M, Imamura M, Kubo N, Morita K, Noriyasu K, Tsukamoto T, et al. Sympathetic denervation and reinnervation after the maze procedure. J Nucl Med. 2005;46(7):1089–94.

    PubMed  Google Scholar 

  21. Matsunari I, Aoki H, Nomura Y, Takeda N, Chen WP, Taki J, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging. 2010;3(5):595–603.

    Article  PubMed  Google Scholar 

  22. Hayes SW, De Lorenzo A, Hachamovitch R, Dhar SC, Hsu P, Cohen I, et al. Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT. J Nucl Med. 2003;44(10):1633–40.

    PubMed  Google Scholar 

  23. Rosenspire KC, Haka MS, Van Dort ME, Jewett DM, Gildersleeve DL, Schwaiger M, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med. 1990;31(8):1328–34.

    PubMed  CAS  Google Scholar 

  24. Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER Jr, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol. 1993;22(2):368–75.

    Article  PubMed  CAS  Google Scholar 

  25. Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F, et al. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol. 2006;13(6):e121–51.

    Article  PubMed  Google Scholar 

  26. Yoshinaga K, Chow BJ, Williams K, Chen L, DeKemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006;48(5):1029–39.

    Article  PubMed  Google Scholar 

  27. Matsunari I, Schricke U, Bengel FM, Haase HU, Barthel P, Schmidt G, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation. 2000;101(22):2579–85.

    Article  PubMed  CAS  Google Scholar 

  28. Shimizu M, Ino H, Yamaguchi M, Terai H, Hayashi K, Nakajima K, et al. Heterogeneity of cardiac sympathetic nerve activity and systolic dysfunction in patients with hypertrophic cardiomyopathy. J Nucl Med. 2002;43(1):15–20.

    PubMed  CAS  Google Scholar 

  29. Chen W, Cao Q, Dilsizian V. Variation of heart-to-mediastinal ratio in (123)I-mIBG cardiac sympathetic imaging: its affecting factors and potential corrections. Curr Cardiol Rep. 2011;13(2):132–7.

    Article  PubMed  Google Scholar 

  30. Kiat H, Van Train KF, Friedman JD, Germano G, Silagan G, Wang FP, et al. Quantitative stress-redistribution thallium-201 SPECT using prone imaging: methodologic development and validation. J Nucl Med. 1992;33(8):1509–15.

    PubMed  CAS  Google Scholar 

  31. Hendel RC, Berman DS, Cullom SJ, Follansbee W, Heller GV, Kiat H, et al. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation. 1999;99(21):2742–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Daiske Abo, MSc; Kumi Ajiki, and Eriko Suzuki for their support of this study.

Conflict of interest

This work is supported in part by FUJIFILM RI Pharma Co., Ltd (Osaka, Japan). All data were recorded and analyzed by Hokkaido University Graduate School of Medicine. This study was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology (Category B, No. 23390294), Adult Vascular Disease Foundation (#H22-23) (Kyoto, Japan), and North-Tech Research Foundation (#H23-S2-17, Sapporo, Japan). Yuuki Tomiyama is supported by the National Institute of Radiological Sciences Human Resource Development Program (Chiba, Japan).

Dr. Yoshinaga is supported by the Imura Clinical Research Award (Adult Vascular Disease Foundation, Kyoto, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichiro Yoshinaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshinaga, K., Tomiyama, Y., Manabe, O. et al. Prone-position acquisition of myocardial 123I-metaiodobenzylguanidine (MIBG) SPECT reveals regional uptake similar to that found using 11C-hydroxyephedrine PET/CT. Ann Nucl Med 28, 761–769 (2014). https://doi.org/10.1007/s12149-014-0868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-014-0868-z

Keywords

Navigation