Skip to main content
Log in

Exemplar application of multi-capillary column ion mobility spectrometry for biological and medical purpose

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

In recent years, ion mobility spectrometry is increasingly in demand for new applications especially on biological samples (cells, bacteria, fungi), in medicine (diagnosis, therapy and medication control e.g. from breath analyses), for food quality control, safety monitoring and characterisation or process control in chemical and pharmaceutical industry. For this purpose instruments based on gas phase separation of ions in weak electric fields were developed at ISAS–Institute for Analytical Sciences, focussing on the particular challenges such as humid and rather complex samples, specific sampling procedures adapted to the application, fast pre-separation techniques like multi-capillary columns and suitable data processing including data bases for relevant analytes and automatic characterisation of IMS-chromatograms. Feasibility studies were carried out successfully for biological and medical purpose at ISAS, including the detection of bacteria, fungi and metabolites of cells and in human breath. For all those samples characteristic pattern of analytes were found and could be used for the identification of cell lines, fungi and bacteria as well as of numerous diseases. Furthermore, the quantification of those analytes could be used to obtain information about the state of the process or person (e.g. growth of cultures, development of diseases, level of medication, grade of cancer). Those examples shall demonstrate the potential of ion mobility spectrometry for the selected applications. However, a general and reliable data bases of reference analytes is required in the near future to enable an exploitation of the metabolic pathways and to confirm the relevance of the detected signals for the investigated topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kell DB (2006) Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today 11(23–24):1085–1092

    Article  CAS  Google Scholar 

  2. Schnackenberg LK, Beger RD (2006) Monitoring the health to disease continuum with global metabolic profiling and systems biology. Pharmacogenomics 7(7):1077–1086

    Article  CAS  Google Scholar 

  3. Rochfort S (2005) Metabolomics reviewed: a new “Omics” platform technology for systems biology and implications for natural products research. J Nat Prod 68(12):1813–1820

    Article  CAS  Google Scholar 

  4. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56(410):273–286

    Article  CAS  Google Scholar 

  5. Griffin JL, Kauppinen RA (2007) Tumour metabolomics in animal models of human cancer. J Proteome Res 6(2):498–505

    Article  CAS  Google Scholar 

  6. de Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63(2):417–428

    Article  Google Scholar 

  7. Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6(2):443–458

    Article  CAS  Google Scholar 

  8. Hodavance MS, Ralston SL, Pelczer I (2007) Beyond blood sugar: the potential of NMR-based metabonomics for type 2 human diabetes, and the horse as a possible model. Anal Bioanal Chem 387(2):533–537

    Article  CAS  Google Scholar 

  9. Thevis M, Schanzer W (2007) Mass spectrometry in sports drug testing: structure characterization and analytical assays. Mass Spectrom Rev 26(1):79–107

    Article  CAS  Google Scholar 

  10. Libardoni M, Stevens PT, Waite JH, Sacks R (2006) Analysis of human breath samples with a multi-bed sorption trap and comprehensive two-dimensional gas chromatography (GC × GC). J Chromatogr B Analyt Technol Biomed Life Sci 842(1):13–21

    Article  CAS  Google Scholar 

  11. Ma W, Liu XY, Pawliszyn J (2006) Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration. Anal Bioanal Chem 385(8):1398–1408

    Article  CAS  Google Scholar 

  12. Cho SM, Kim YJ, Heo GS, Shin SM (2006) Two-step preconcentration for analysis of exhaled gas of human breath with electronic nose. Sens Actuators B Chem 117(1):50–57

    Article  Google Scholar 

  13. Wood WL, Higbee DJ, Gooldy M, Glogowski S, Fitzpatrick R, Karalus RJ, Wood TD, Mangino DJ (2006) Analysis of volatile bacterial metabolites by gas chromatography-mass spectrometry. Spectroscopy 21:20–25

    CAS  Google Scholar 

  14. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry. CRC, London, UK

    Google Scholar 

  15. Schmidt H, Tadjimukhamedov F, Douglas KM, Prasad S, Smith GB, Eiceman GA (2006) Quantitative assessment and optimization of parameters for pyrolysis of bacteria with gas chromatographic analysis. J Anal Appl Pyrol 76:161–168

    Article  CAS  Google Scholar 

  16. Prasad S, Schmidt H, Lampen P, Wang M, Guth R, Rao JV, Smith GB, Eiceman GA (2006) Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry. Analyst 131(11):1216–1225

    Article  CAS  Google Scholar 

  17. Tang XT, Bruce JE, Hill HH (2006) Characterizing electrospray ionization using atmospheric pressure ion mobility spectrometry. Anal Chem 78(22):7751–7760

    Article  CAS  Google Scholar 

  18. Hill HH, Asbury CH, Wu GR, Matz LM, Ichiye T (2002) Charge location on gas phase peptides. Int J Mass Spectrom 219(1):23–37

    Article  CAS  Google Scholar 

  19. Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectrosc Eur 18(6):22–27

    CAS  Google Scholar 

  20. Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatogr A 1084(1):2145–2151

    Article  Google Scholar 

  21. Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384:1059–1070

    Article  CAS  Google Scholar 

  22. Vautz W, Baumbach JI, Jung J (2006) Beer fermentation control using ion mobility spectrometry. J Inst Brew 112(2):157–164

    CAS  Google Scholar 

  23. Vautz W, Sielemann S, Baumbach JI (2004) Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry. Anal Chim Acta 513:393–399

    Article  CAS  Google Scholar 

  24. Vautz W, Zimmermann D, Hartmann M, Baumbach JI, Nolte J, Jung J (2006) Ion mobility spectrometry for food quality and safety. Food Addit Contam 23(11):1064–1073

    Article  CAS  Google Scholar 

  25. Baumbach JI, Eiceman GA (1999) Ion mobility spectrometry: arriving on-site and moving beyond a low profile. Appl Spectrosc 53(9):338A–355A

    Article  CAS  Google Scholar 

  26. Ruzsanyi V, Baumbach JI, Eiceman GA (2003) Detection of the mold markers using ion mobility spectrometry. Int J Ion Mobil Spectrom 6(2):53–57

    CAS  Google Scholar 

  27. Soppart O, Baumbach JI (2000) Comparison of electric fields within drift tubes for ion mobility spectrometry. Meas Sci Technol 11:1473–1479

    Article  CAS  Google Scholar 

  28. Bader S, Urfer W, Baumbach JI (2007) Reduction of Ion Mobility Spectrometry data by clustering characteristic peak structures. J Chemom 20(3–4):128–135

    Google Scholar 

  29. Bader S, Urfer W, Baumbach JI (2005) Processing ion mobility spectrometry data to characterize group differences in a multiple class comparison. Int J Ion Mobil Spectrom 8:1–4

    Google Scholar 

Download references

Acknowledgement

The financial support of the Bundesministerium für Bildung und Forschung and the Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen is gratefully acknowledged. The co-operation with the Lung Hospital in Hemer, Germany, in particular Dr. Lutz Freitag, Dr. Michael Westhoff and Dr. Patrick Litterst and the participation of all the healthy subjects and patients was essential for the breath analyses investigations. The bacteria and fungi investigations were carried out at the Hygiene-Institut in Iserlohn, Germany. The dedicated work of Luzia Seifert and Susanne Krois, both technicians at ISAS, was indispensable for the success of the investigations as well as the support of Dunja Zimmermann and Michéle Hartmann during the work with the cell lines and of Dr. Jürgen Nolte and Rita Fobbe for the identification of unknown analytes using mass spectrometry. Last but not least, the contributions of Sabine Bader related to data processing and evaluation potentiated the interpretation of the numerous and complex data sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Vautz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vautz, W., Baumbach, J.I. Exemplar application of multi-capillary column ion mobility spectrometry for biological and medical purpose. Int. J. Ion Mobil. Spec. 11, 35–41 (2008). https://doi.org/10.1007/s12127-008-0007-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-008-0007-4

Keywords

Navigation