Skip to main content
Log in

1H, 13C and 15N resonance assignment of human guanylate kinase

Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Human guanylate kinase (hGMPK) is a critical enzyme that, in addition to phosphorylating its physiological substrate (d)GMP, catalyzes the second phosphorylation step in the conversion of anti-viral and anti-cancer nucleoside analogs to their corresponding active nucleoside analog triphosphates. Until now, a high-resolution structure of hGMPK is unavailable and thus, we studied free hGMPK by NMR and assigned the chemical shift resonances of backbone and side chain 1H, 13C, and 15N nuclei as a first step towards the enzyme’s structural and mechanistic analysis with atomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Agarwal KC, Miech RP, Parks RE Jr (1978) Guanylate kinases from human erythrocytes, hog brain, and rat liver. Method Enzymol 51:483–490

    Article  Google Scholar 

  • Ardiani A, Goyke A, Black ME (2009) Mutations at serine 37 in mouse guanylate kinase confer resistance to 6-thioguanine. Protein Eng Des Sel 22:225–232

    Article  Google Scholar 

  • Ashton WT, Karkas JD, Field AK, Tolman RL (1982) Activation by thymidine kinase and potent antiherpetic activity of 2′-nor-2′-deoxyguanosine (2′NDG). Biochem Biophys Res Commun 108:1716–1721

    Article  Google Scholar 

  • Bax A, Clore GM, Gronenborn AM (1990) 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J Magn Reson 88:425–431

    ADS  Google Scholar 

  • Blaszczyk J, Li Y, Yan HG, Ji XH (2001) Crystal structure of unligated guanylate kinase from yeast reveals GMP-induced conformational changes. J Mol Biol 307:247–257

    Article  Google Scholar 

  • Cai M, Huang Y, Sakaguchi K et al (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in shape Escherichia coli. J Biomol NMR 11:97–102

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Elion GB (1989) The purine path to chemotherapy. Science 244:41–47

    Article  ADS  Google Scholar 

  • Field AK, Davies ME, DeWitt C et al (1983) 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication. Proc Natl Acad Sci USA 80:4139–4143

    Article  ADS  Google Scholar 

  • Grzesiek S, Bax A (1992) Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson 96:432–440

    ADS  Google Scholar 

  • Hall SW, Kühn H (1986) Purification and properties of guanylate kinase from bovine retinas and rod outer segments. Eur J Biochem 161:551–556

    Article  Google Scholar 

  • Hible G, Renault L, Schaeffer F et al (2005) Calorimetric and crystallographic analysis of the oligomeric structure of Escherichia coli GMP kinase. J Mol Biol 352:1044–1059

    Article  Google Scholar 

  • Hible G, Christova P, Renault L et al (2006a) Unique GMP-Binding site in Mycobacterium tuberculosis guanosine monophosphate kinase. Proteins 62:489–500

    Article  Google Scholar 

  • Hible G, Daalova P, Gilles A-M, Cherfils J (2006b) Crystal structures of GMP kinase in complex with ganciclovir monophosphate and Ap5G. Biochimie 88:1157–1164

    Article  Google Scholar 

  • Jain R, Khan N, Menzel A et al (2016) Insights into open/closed conformations of the catalytically active human guanylate kinase as investigated by small-angle X-ray scattering. Eur Biophys J 45:81–89

    Article  Google Scholar 

  • Kay LE, Xu GY, Yamazaki T (1994) Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J Magn Reson A 109:129–133

    Article  ADS  Google Scholar 

  • Keller RL (2004) Computer aided resonance assignment. http://cara.nmr.ch/ Accessed 26 July 2016

  • Konrad M (1992) Cloning and expression of the essential gene for guanylate kinase from yeast. J Biol Chem 267:25652–25655

    Google Scholar 

  • Marion D, Driscoll PC, Kay LE et al (1989a) Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1β. BioChemistry 28:6150–6156

    Article  Google Scholar 

  • Marion D, Kay LE, Sparks SW (1989b) Three-dimensional heteronuclear NMR of 15N labeled proteins. J Am Chem Soc 111:1515–1517

    Article  Google Scholar 

  • Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75

    Article  Google Scholar 

  • Miller RL, Adamczyk DL, Spector T et al (1977) Reassessment of interactions of guanylate kinase and 6-thioguanosine 5′-phosphate. Biochem Pharmacol 26:1573–1576

    Article  Google Scholar 

  • Miller WH, Miller RL (1980) Phosphorylation of acyclovir (acycloguanosine) monophosphate by GMP kinase. J Biol Chem 255:7204–7207

    Google Scholar 

  • Muhandiram DR, Farrow NA, Xu GY et al (1993) A gradient 13C NOESY-HSQC experiment for recording NOESY spectra of 13C-labeled proteins dissolved in H2O. J Magn Reson B 102:317–321

    Article  Google Scholar 

  • Omari El K, Dhaliwal B, Lockyer M et al (2006) Structure of Staphylococcus aureus guanylate monophosphate kinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:949–953

    Article  Google Scholar 

  • Schleucher J, Sattler M, Griesinger C (1993) Coherence selection by gradients without signal attenuation: application to the three-dimensional HNCO experiment. Angew Chem Int Ed 32:1489–1491

    Article  Google Scholar 

  • Sekulic N, Shuvalova L, Spangenberg O et al (2002) Structural characterization of the closed conformation of mouse guanylate kinase. J Biol Chem 277:30236–30243

    Article  Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  Google Scholar 

  • Sivashanmugam A, Murray V, Cui C et al (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci 18:936–948

    Article  Google Scholar 

  • Stehle T, Schulz GE (1992) Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 Å resolution. J Mol Biol 224:1127–1141

    Article  Google Scholar 

  • Vedadi M, Lew J, Artz J et al (2007) Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms. Mol Biochem Parasitol 151:100–110

    Article  Google Scholar 

  • Zuiderweg E, Fesik SW (1989) Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. BioChemistry 28:2387–2391

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Christian Griesinger for providing measurement time and for valuable discussions related to the project. This research was supported by a DAAD scholarship (to NK), the Max Planck Society and by start-up funds provided by the James Graham Brown Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Michael Sabo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Ban, D., Trigo-Mourino, P. et al. 1H, 13C and 15N resonance assignment of human guanylate kinase. Biomol NMR Assign 12, 11–14 (2018). https://doi.org/10.1007/s12104-017-9771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-017-9771-6

Keywords

Navigation