Skip to main content

Advertisement

Log in

Cervical carcinoma induces NLRP3 inflammasome activation and IL-1ß release in human peripheral blood monocytes affecting patients’ overall survival

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Our group previously demonstrated that genetic variants in inflammasome genes contribute to protection against the establishment of human papilloma virus (HPV)-associated cervical carcinoma (CC). The objective of this study was to better understand the contribution of inflammasome and its cytokines in the CC microenvironment.

Methods

The inflammasome activation was analyzed in CC tumoral cell lines and healthy donors (HD)’ monocytes in co-culture. In vitro results were then compared to CC patients’ public databases.

Results

CC cells did not produce IL-1ß or IL-18 themselves, however, when in co-culture with HD monocytes, induced IL-1ß release in those leucocytes. Inflammasome activation appears to be partially dependent on the NLRP3 receptor. Public data analysis revealed that IL1B expression is increased in the CC compared to normal uterine cervix, and that patients with high IL1B expression had a shorter overall survival.

Conclusion

CC microenvironment can activate the inflammasome and IL-1ß release in surrounding monocytes, which could be detrimental for CC prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Arneth B. Tumor microenvironment. Medicina (Kaunas). 2019;56(1):15. https://doi.org/10.3390/medicina56010015. (Published 2019 Dec 30).

    Article  PubMed  Google Scholar 

  2. Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol. 2018;31(2):214–34. https://doi.org/10.1038/modpathol.2017.156.

    Article  CAS  PubMed  Google Scholar 

  3. Karki R, Man SM, Kanneganti TD. Inflammasomes and cancer. Cancer Immunol Res. 2017;5(2):94–9. https://doi.org/10.1158/2326-6066.CIR-16-0269/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. J Cell Sci. 2017;130(23):3955–63. https://doi.org/10.1242/jcs.207365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmad I, Muneer KM, Tamimi IA, Chang ME, Ata MO, Yusuf N. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol Appl Pharmacol. 2013;270(1):70–6. https://doi.org/10.1016/j.taap.2013.03.027.

    Article  CAS  PubMed  Google Scholar 

  6. Kolb R, Phan L, Borcherding N, Liu Y, Yuan F, Janowski AM, et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun. 2016;6(7):13007. https://doi.org/10.1038/ncomms13007.

    Article  CAS  Google Scholar 

  7. Fabbi M, Carbotti G, Ferrini S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol. 2015;97(4):665–75. https://doi.org/10.1189/jlb.5RU0714-360RR.

    Article  CAS  PubMed  Google Scholar 

  8. Lamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011;187(2):597–602. https://doi.org/10.4049/jimmunol.1100229.

    Article  CAS  PubMed  Google Scholar 

  9. Chen LC, Wang LJ, Tsang NM, Ojcius DM, Chen CC, Ouyang CN, et al. Tumour inflammasome-derived IL-1β recruits neutrophils and improves local recurrence-free survival in EBV-induced nasopharyngeal carcinoma. EMBO Mol Med. 2012;4(12):1276–93. https://doi.org/10.1002/emmm.201201569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar S, Dhiman M. Inflammasome activation and regulation during Helicobacter pylori pathogenesis. Microb Pathog. 2018;125:468–74. https://doi.org/10.1016/j.micpath.2018.10.012.

    Article  CAS  PubMed  Google Scholar 

  11. Zur HH. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50. https://doi.org/10.1038/nrc798.

    Article  CAS  Google Scholar 

  12. Pontillo A, Bricher P, Leal VN, Lima S, Souza PR, Crovella S. Role of inflammasome genetics in susceptibility to HPV infection and cervical cancer development. J Med Virol. 2016;88(9):1646–51. https://doi.org/10.1002/jmv.24514.

    Article  CAS  PubMed  Google Scholar 

  13. Reinholz M, Kawakami Y, Salzer S, Kreuter A, Dombrowski Y, Koglin S, et al. HPV16 activates the AIM2 inflammasome in keratinocytes. Arch Dermatol Res. 2013;305(8):723–32. https://doi.org/10.1007/s00403-013-1375-0.

    Article  CAS  PubMed  Google Scholar 

  14. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20. https://doi.org/10.1038/nri.2016.58.

    Article  CAS  PubMed  Google Scholar 

  15. Niebler M, Qian X, Höfler D, Kogosov V, Kaewprag J, Kaufmann AM, et al. Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53. PLoS Pathog. 2013;9(8):e1003536. https://doi.org/10.1371/journal.ppat.1003536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qian N, Chen X, Han S, Qiang F, Jin G, Zhou X, et al. Circulating IL-1beta levels, polymorphisms of IL-1B, and risk of cervical cancer in Chinese women. J Cancer Res Clin Oncol. 2010;136(5):709–16. https://doi.org/10.1007/s00432-009-0710-5.

    Article  CAS  PubMed  Google Scholar 

  17. Matamoros JA, da Silva MIF, de Moura PMMF, Leitão MDCG, Coimbra EC. Reduced expression of IL-1β and IL-18 proinflammatory interleukins increases the risk of developing cervical cancer. Asian Pac J Cancer Prev. 2019;20(9):2715–21 (Published 2019 Sep 1).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcia-Arias A, Cetina L, Candelaria M, Robles E, Dueñas-González A. The prognostic significance of leukocytosis in cervical cancer. Int J Gynecol Cancer. 2007;17(2):465–70. https://doi.org/10.1111/j.1525-1438.2007.00816.x.

    Article  CAS  PubMed  Google Scholar 

  19. BRASIL. Ministério da Saúde. Avanços para a municipalização plena da saúde: o que cabe ao município. Brasília: [Ministério da Saúde], 1994.

  20. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8. https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  PubMed  Google Scholar 

  21. Gattorno M, Tassi S, Carta S, Delfino L, Ferlito F, Pelagatti MA, et al. Pattern of interleukin-1beta secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum. 2007;56(9):3138–48. https://doi.org/10.1002/art.22842.

    Article  CAS  PubMed  Google Scholar 

  22. Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu JW, et al. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem. 2010;285(13):9792–802. https://doi.org/10.1074/jbc.M109.082305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21(3):248–55. https://doi.org/10.1038/nm.3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen W, Wong C, Vosburgh E, Levine AJ, Foran DJ, Xu EY. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately. J Vis Exp. 2014;89:51639. https://doi.org/10.3791/51639. (Published 2014 Jul 8).

    Article  Google Scholar 

  25. Gouveia-Fernandes S. Monocytes and macrophages in cancer: unsuspected roles. Adv Exp Med Biol. 2020;1219:161–85. https://doi.org/10.1007/978-3-030-34025-4_9.

    Article  CAS  PubMed  Google Scholar 

  26. He A, Shao J, Zhang Y, Lu H, Wu Z, Xu Y. CD200Fc reduces LPS-induced IL-1β activation in human cervical cancer cells by modulating TLR4-NF-κB and NLRP3 inflammasome pathway. Oncotarget. 2017;8(20):33214–24. https://doi.org/10.18632/oncotarget.16596.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stone SC, Rossetti RA, Lima AM, Lepique AP. HPV associated tumor cells control tumor microenvironment and leukocytosis in experimental models. Immun Inflamm Dis. 2014;2(2):63–75. https://doi.org/10.1002/iid3.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183(3):2008–15. https://doi.org/10.4049/jimmunol.0900138.

    Article  CAS  PubMed  Google Scholar 

  29. Leek R, Grimes DR, Harris AL, McIntyre A. Methods: using three-dimensional culture (Spheroids) as an in vitro model of tumour hypoxia. Adv Exp Med Biol. 2016;899:167–96. https://doi.org/10.1007/978-3-319-26666-4_10.

    Article  CAS  PubMed  Google Scholar 

  30. Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood. 2009;113(10):2324–35. https://doi.org/10.1182/blood-2008-03-146720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Al-Tahhan MA, Etewa RL, El Behery MM. Association between circulating interleukin-1 beta (IL-1β) levels and IL-1β C-511T polymorphism with cervical cancer risk in Egyptian women. Mol Cell Biochem. 2011;353(1–2):159–65. https://doi.org/10.1007/s11010-011-0782-9.

    Article  CAS  PubMed  Google Scholar 

  32. Kopalli SR, Kang TB, Lee KH, Koppula S. NLRP3 Inflammasome activation inhibitors in inflammation-associated cancer immunotherapy: an update on the recent patents. Recent Pat Anticancer Drug Discov. 2018;13(1):106–17. https://doi.org/10.2174/1574892812666171027102627.

    Article  CAS  PubMed  Google Scholar 

  33. Tang Y, Wang Y, Chen Q, Qiu N, Zhao Y, You X. MiR-223 inhibited cell metastasis of human cervical cancer by modulating epithelial-mesenchymal transition. Int J Clin Exp Pathol. 2015;8(9):11224–9 (Published 2015 Sep 1).

    PubMed  PubMed Central  Google Scholar 

  34. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol. 2012;189(8):4175–81. https://doi.org/10.4049/jimmunol.1201516.

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Ambade A, Re F. Cutting edge: necrosis activates the NLRP3 inflammasome. J Immunol. 2009;183(3):1528–32. https://doi.org/10.4049/jimmunol.0901080.

    Article  CAS  PubMed  Google Scholar 

  36. Bauernfeind F, Niepmann S, Knolle PA, Hornung V. Aging-associated TNF production primes inflammasome activation and NLRP3-related metabolic disturbances. J Immunol. 2016;197(7):2900–8. https://doi.org/10.4049/jimmunol.1501336.

    Article  CAS  PubMed  Google Scholar 

  37. Chang TH, Huang JH, Lin HC, Chen WY, Lee YH, Hsu LC, Netea MG, Ting JP, Wu-Hsieh BA. Dectin-2 is a primary receptor for NLRP3 inflammasome activation in dendritic cell response to Histoplasma capsulatum. PLoS Pathog. 2017;13(7):e1006485. https://doi.org/10.1371/journal.ppat.1006485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chiba S, Ikushima H, Ueki H, Yanai H, Kimura Y, Hangai S, et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife. 2014;3:e04177. https://doi.org/10.7554/eLife.04177.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lin YC, Huang DY, Wang JS, Lin YL, Hsieh SL, Huang KC, et al. Syk is involved in NLRP3 inflammasome-mediated caspase-1 activation through adaptor ASC phosphorylation and enhanced oligomerization. J Leukoc Biol. 2015;97(5):825–35. https://doi.org/10.1189/jlb.3HI0814-371RR.

    Article  CAS  PubMed  Google Scholar 

  40. Qi T, Wang Q, Zheng L, Yang HL, Bao J. Correlation of serum IL-18 level and IL-18 gene promoter polymorphisms to the risk of cervical cancer. Nan Fang Yi Ke Da Xue Xue Bao. 2008;28(5):754–7 (Chinese PMID: 18504197).

    CAS  PubMed  Google Scholar 

  41. Yang YC, Chang TY, Chen TC, Chang SC, Lin WS, Lee YJ. Genetic variants in interleukin-18 gene and risk for cervical squamous cell carcinoma. Hum Immunol. 2013;74(7):882–7. https://doi.org/10.1016/j.humimm.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  42. Yang HL, Pin BH, Wang Q, Zheng L, Tang W, Qi T, Bao J. Association of interleukin-18 gene rs1946519 and rs360718 single nucleotide polymorphism with cervical cancer. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27(7):1006–8 (Chinese PMID: 17666338).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Blood Bank Service of Hospital “Oswaldo Cruz'' (São Paulo, SP, Brazil), for the Healthy Donors (HD) recruitment; Prof. Luisa Lina Villa, Prof. Ana Paula Lepique, Dr. Lara Termini and Dr. Rafaella Almeida Lima Nunes for reagents donation and critical discussion of the results.

Funding

This work was supported by the São Paulo Research foundation (FAPESP) (Grant n. 2019/06363-4; 2015/50650-7). F.P.F, E.C.R, V.N.C.L. were recipients of a FAPESP fellowship (2018/04361-1, 2017/10824-1, 2015/17373-0). R.A.G.C., and J.L.S. were recipients of a CAPES Fellowship. A.P. is recipient of a CNPq Fellowhsip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raylane Adrielle Gonçalves Cambui.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Research involving human participants and/or animals and Informed consent

The human samples were provided by the hemotherapy center "Insituto HOC de Hemoterapia" (Sao Paulo), to which belongs the ethical approval. I will e-mail you the term of consent provided by the hemotherapy center.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12094_2023_3241_MOESM1_ESM.jpg

Supplementary File 1. Inflammaosme genes’ expression in tumoral and normal cervix. Normalized expression of IL1B (A), IL18 (B), NLRP1 (C), NLRP3 (D), NLRC4 (E), NAIP (F), AIM2 (G), CARD8 (H), MEFV (I), CASP1 (J), CASP4 (K), CASP5 (L), and GSDMD (M) in tumoral and normal cervix. Data are from GEPIA software and referred to 306 patients with cervical cancer and 13 healthy donors. Gene expression is expressed as transcript por million cells (TPM). Student t test was applied to compare gene expression in the two groups. Differences with a p-value < 0.05 are considered statistically significant. (JPEG 338 KB)

12094_2023_3241_MOESM2_ESM.docx

Supplementary File 2. IL-1ß plays an apparently favorable role for the growth of CC. Immortalized CC cell lines C-33A, SIHa and HeLa in a three-dimensional (3D) model were cultured in the presence of recombinant human IL-1ß (rh-IL-1ß) (150 pg / mL or 300 pg / mL) for 24-48- 72 hours and the size of the spheroids were measured. (A) A representative photo of the spheres of the SiHa cell line in the presence or not of recombinant human IL-1ß (rh-IL-1ß). (B-D) Bar graph for the three experimental conditions, control, that is, without the presence of recombinant human IL-1ß (rh-IL-1ß), or with 150 pg / mL or 300 pg / mL of recombinant human IL-1ß (rh-IL-1ß). (DOCX 8473 KB)

12094_2023_3241_MOESM3_ESM.docx

Supplementary File 3. The conditioned medium (CM) was not able to lead to the activation of the inflammsome in the monocytes. 6.5 x 104 monocytes (Mo)/well isolated from healthy donors (n=6) were cultured in the presence of an increasing proportion of 2D conditioned medium (CM) of immortalized CC cell lines (A) HeLa and (B) C33-A for 1, 3, 8 and 24 hours. and IL-1ß release was measured in culture supernatants. (DOCX 46 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, F.P., Cambui, R.A.G., Soares, J.L. et al. Cervical carcinoma induces NLRP3 inflammasome activation and IL-1ß release in human peripheral blood monocytes affecting patients’ overall survival. Clin Transl Oncol 25, 3277–3286 (2023). https://doi.org/10.1007/s12094-023-03241-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03241-2

Keywords

Navigation