Skip to main content

Advertisement

Log in

Unveiling the vulnerabilities of synthetic lethality in triple-negative breast cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) is the most invasive molecular subtype of breast cancer (BC), accounting for about nearly 15% of all BC cases reported annually. The absence of the three major BC hormone receptors, Estrogen (ER), Progesterone (PR), and Human Epidermal Growth Factor 2 (HER2) receptor, accounts for the characteristic “Triple negative” phraseology. The absence of these marked receptors makes this cancer insensitive to classical endocrine therapeutic approaches. Hence, the available treatment options remain solemnly limited to only conventional realms of chemotherapy and radiation therapy. Moreover, these therapeutic regimes are often accompanied by numerous treatment side-effects that account for early distant metastasis, relapse, and shorter overall survival in TNBC patients. The rigorous ongoing research in the field of clinical oncology has identified certain gene-based selective tumor-targeting susceptibilities, which are known to account for the molecular fallacies and mutation-based genetic alterations that develop the progression of TNBC. One such promising approach is synthetic lethality, which identifies novel drug targets of cancer, from undruggable oncogenes or tumor-suppressor genes, which cannot be otherwise clasped by the conventional approaches of mutational analysis. Herein, a holistic scientific review is presented, to undermine the mechanisms of synthetic lethal (SL) interactions in TNBC, the epigenetic crosstalks encountered, the role of Poly (ADP-ribose) polymerase inhibitors (PARPi) in inducing SL interactions, and the limitations faced by the lethal interactors. Thus, the future predicament of synthetic lethal interactions in the advancement of modern translational TNBC research is assessed with specific emphasis on patient-specific personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ACS:

American cancer society

BC:

Breast cancer

BER:

Base excision repair

CDK:

Cyclin-dependent kinase

ChIP:

Chromatin immunoprecipitation sequencing

CRISPR:

Clustered regularly interspaced short palindromic repeats

CSC:

Cancer stem cells

DDFS:

Distant disease-free survival

DFS:

Disease-free survival

DDR:

DNA damage response

DSB:

Double-strand break

DSC:

Double-strand crosslink

EMA:

European medicines agency

EMT:

Epithelial–mesenchymal transformation

ER:

Estrogen receptor

gPALB2:

Germline PALB2

gRNA:

Guide RNA

HER2:

Human epidermal growth factor receptor 2

HMG:

Mobility group (protein)

HR:

Homologous recombination

HRR:

Homologous recombination repair

IDFS:

Invasive disease-free survival

lncRNA:

Long non-coding RNA

LOH:

Loss of heterozygosity

MDR:

Multidrug resistance

MHEJ:

Microhomology-mediated end joining

MRD:

Minimal residual disease

NGS:

Next-generation sequencing

NHEJ:

Non-homologous end joining

NLS:

Nuclear localizing sequence

OS:

Overall survival

ORR:

Overall response rate

PARPi:

Poly (ADP-ribose) polymerase inhibitor

PFS:

Progression-free survival

pi-RNA:

Piwi-interacting RNA

PR:

Progesterone receptor

RNAi:

RNA interference

SDL:

Synthetic dosage lethality

SR:

Serine and arginine-rich (proteins)

sgRNA:

Single-guide RNA

shRNA:

Short/small hairpin RNA

si-RNA:

Small interfering RNA

SL:

Synthetic lethal

sBRCA:

Somatic BRCA

SSB:

Single-strand break

TME:

Tumor microenvironment

TNBC:

Triple-negative breast cancer

TSG:

Tumor suppressor gene

WHO:

World Health Organization

References

  1. Han Ye, Xiaopeng Yu, Li S, Tian Ye, Liu C. New perspectives for resistance to PARP inhibitors in triple-negative breast cancer. Front Oncol. 2020;10:578095.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahmad A, editor. Breast cancer metastasis and drug resistance: challenges and progress. vol. 1152. Springer Nature; 2019.

    Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  4. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  5. Dahlin JL, Walters MA. The essential roles of chemistry in high-throughput screening triage. Future Med Chem. 2014;6(11):1265–90.

    Article  CAS  PubMed  Google Scholar 

  6. do Nascimento RG, Otoni KM. Histological and molecular classification of breast cancer: what do we know. Mastology. 2020;30:e20200024.

    Article  Google Scholar 

  7. Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010;32(1–2):35.

    PubMed  PubMed Central  Google Scholar 

  8. Tsang JYS, Huang Y-H, Luo M-H, Ni Y-B, Chan S-K, Lui PCW, Yu AMC, Tan PH, Tse GM. Cancer stem cell markers are associated with adverse biomarker profiles and molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012;136:407–17.

    Article  CAS  PubMed  Google Scholar 

  9. Anders CK, Carey LA. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009;9:S73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borri F, Granaglia A. Pathology of triple negative breast cancer. Semin Cancer Biol. 2021;72:136–45.

    Article  CAS  PubMed  Google Scholar 

  11. Yin Li, Duan J-J, Bian X-W, Shi-cang Yu. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:1–13.

    Article  Google Scholar 

  12. Barchiesi G, Roberto M, Verrico M, Vici P, Tomao S, Tomao F. Emerging role of PARP inhibitors in metastatic triple negative breast cancer. Current scenario and future perspectives. Front Oncol. 2021;11:769280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nwagu GC, Bhattarai S, Swahn M, Ahmed S, Aneja R. Prevalence and mortality of triple-negative breast cancer in West Africa: biologic and sociocultural factors. JCO Global Oncol. 2021;7:1129–40.

    Article  Google Scholar 

  14. Li S, Topatana W, Juengpanich S, Cao J, Jiahao Hu, Zhang B, Ma D, Cai X, Chen M. Development of synthetic lethality in cancer: molecular and cellular classification. Signal Transduct Target Ther. 2020;5(1):241.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li C-H, Hsu T-I, Chang Y-C, Chan M-H, Lu P-J, Hsiao M. Stationed or relocating: The seesawing emt/met determinants from embryonic development to cancer metastasis. Biomedicines. 2021;9(9):1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobzhansky TH. Genetics of natural populations. XIII. Recombination and variability in populations of Drosophila pseudoobscura. Genetics. 1946;31(3):269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zecchini V, Frezza C. Metabolic synthetic lethality in cancer therapy. Biochim Biophys Acta (BBA) Bioenerg. 2017;188(8):723–31.

    Article  Google Scholar 

  18. Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349(6255):1483–9.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang B, Tang C, Yao Y, Chen X, Zhou C, Wei Z, Xing F, et al. The tumor therapy landscape of synthetic lethality. Nat Commun. 2021;12(1):1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sajesh BV, Guppy BJ, McManus KJ. Synthetic genetic targeting of genome instability in cancer. Cancers. 2013;5(3):739–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de la Cruz FF, Gapp BV, Nijman SMB. Synthetic lethal vulnerabilities of cancer. Annu Rev Pharmacol Toxicol. 2015;55:513–31.

    Article  Google Scholar 

  22. Dwane L, Behan FM, Gonçalves E, Lightfoot H, Yang W, van der Meer D, Shepherd R, Pignatelli M, Iorio F, Garnett MJ. Project Score database: a resource for investigating cancer cell dependencies and prioritizing therapeutic targets. Nucleic Acids Res. 2021;49(D1):D1365–72.

    Article  CAS  PubMed  Google Scholar 

  23. Ma M, Ye AY, Zheng W, Kong L. A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Res Int. 2013;2013:270805. https://doi.org/10.1155/2013/270805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, Santarosa M, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.

    Article  CAS  PubMed  Google Scholar 

  25. Walsh CS. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol. 2015;137(2):343–50.

    Article  CAS  PubMed  Google Scholar 

  26. Scully R, Anderson SF, Chao DM, Wei W, Ye L, Young RA, Livingston DM, Parvin JD. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci. 1997;94(11):5605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, Elledge SJ. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science. 2007;316(5828):1194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dhawan M, Ryan CJ. BRCAness and prostate cancer: Diagnostic and therapeutic considerations. Prostate Cancer Prostatic Dis. 2018;21(4):488–98.

    Article  PubMed  Google Scholar 

  29. Turner N, Tutt A, Ashworth A. Hallmarks of’BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–9.

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, Matsunaga Y, Tsurutani J, Akashi-Tanaka S, Masuda H, Ide Y, Hashimoto R, et al. BRCAness as a prognostic indicator in patients with early breast cancer. Sci Rep. 2020;10(1):1–8.

    Article  Google Scholar 

  31. Tung N, Lin NU, Kidd J, Allen BA, Singh N, Wenstrup RJ, Hartman A-R, Winer EP, Garber JE. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol. 2016;34(13):1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Winter C, Nilsson MP, Olsson E, George AM, Chen Y, Kvist A, Törngren T, et al. Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic. Ann Oncol. 2016;27(8):1532–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips K-A, Mooij TM, Roos-Blom M-J, Jervis S, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16.

    Article  CAS  PubMed  Google Scholar 

  34. Toss A, Molinaro E, Venturelli M, Domati F, Marcheselli L, Piana S, Barbieri E, et al. BRCA detection rate in an Italian cohort of luminal early-onset and triple-negative breast cancer patients without family history: when biology overcomes genealogy. Cancers. 2020;12(5):1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo M, Ren J, House MG, Qi Yu, Brock MV, Herman JG. Accumulation of promoter methylation suggests epigenetic progression in squamous cell carcinoma of the esophagus. Clin Cancer Res. 2006;12(15):4515–22.

    Article  CAS  PubMed  Google Scholar 

  36. McLornan DP, List A, Mufti GJ. Applying synthetic lethality for the selective targeting of cancer. N Engl J Med. 2014;371(18):1725–35.

    Article  CAS  PubMed  Google Scholar 

  37. Yan W, Herman JG, Guo M. Epigenome-based personalized medicine in human cancer. Epigenomics. 2016;8(1):119–33.

    Article  CAS  PubMed  Google Scholar 

  38. Gao A, Guo M. Epigenetic based synthetic lethal strategies in human cancers. Biomark Res. 2020;8(1):1–14.

    Article  Google Scholar 

  39. Gao D, Herman JG, Guo M. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget. 2016;7(24):37331.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92(7):564–9.

    Article  CAS  PubMed  Google Scholar 

  41. Aguilar-Quesada R, Muñoz-Gámez JA, Martín-Oliva D, Peralta A, Valenzuela MT, Matínez-Romero R, Quiles-Pérez R, et al. Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Mol Biol. 2007;8(1):1–8.

    Article  Google Scholar 

  42. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 2010;10(4):293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–74.

    Article  CAS  PubMed  Google Scholar 

  44. Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage. Science. 2002;297(5581):547–51.

    Article  CAS  PubMed  Google Scholar 

  45. Harrison JC, Haber JE. Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet. 2006;40:209–35.

    Article  CAS  PubMed  Google Scholar 

  46. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28(5):739–45.

    Article  CAS  PubMed  Google Scholar 

  47. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ashworth A. A synthetic lethal therapeutic approach: poly (ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26(22):3785–90.

    Article  CAS  PubMed  Google Scholar 

  49. Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A, Reis-Filho JS. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle. 2011;10(8):1192–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murcia De, Menissier J, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Manuel Mark F, Oliver J, et al. Requirement of poly (ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci. 1997;94(14):7303–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Woodhouse BC, Dianov GL. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair. 2008;7(7):1077–86.

    Article  CAS  PubMed  Google Scholar 

  52. Davidovic L, Vodenicharov M, Affar EB, Poirier GG. Importance of poly (ADP-ribose) glycohydrolase in the control of poly (ADP-ribose) metabolism. Exp Cell Res. 2001;268(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  53. Nguewa PA, Fuertes MA, Valladares B, Alonso C, Pérez JM. Poly (ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. Prog Biophys Mol Biol. 2005;88(1):143–72.

    Article  CAS  PubMed  Google Scholar 

  54. Virág L, Szabó C. The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol Rev. 2002;54(3):375–429.

    Article  PubMed  Google Scholar 

  55. Jagtap P, Szabó C. Poly (ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005;4(5):421–40.

    Article  CAS  PubMed  Google Scholar 

  56. Pillai JB, Russell HM, Raman J, Jeevanandam V, Gupta MP. Increased expression of poly (ADP-ribose) polymerase-1 contributes to caspase-independent myocyte cell death during heart failure. Am J Physiol Heart Circ Physiol. 2005;288(2):H486–96.

    Article  CAS  PubMed  Google Scholar 

  57. Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair. 2007;6(6):695–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Amé J-C, Spenlehauer C, De Murcia G. The PARP superfamily. BioEssays. 2004;26(8):882–93.

    Article  PubMed  Google Scholar 

  59. Bouchard VJ, Rouleau M, Poirier GG. PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol. 2003;31(6):446–54.

    Article  CAS  PubMed  Google Scholar 

  60. Huber A, Bai P, Murcia JMD, De Murcia G. PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair. 2004;3(8–9):1103–8.

    Article  CAS  PubMed  Google Scholar 

  61. Hoeijmakers JHJ. DNA damage, aging, and cancer. N Engl J Med. 2009;361(15):1475–85.

    Article  CAS  PubMed  Google Scholar 

  62. Haince J-F, McDonald D, Rodrigue A, Déry U, Masson J-Y, Hendzel MJ, Poirier GG. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem. 2008;283(2):1197–208.

    Article  CAS  PubMed  Google Scholar 

  63. Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, James DI, et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell. 2018;33(6):1078–93.

    Article  CAS  PubMed  Google Scholar 

  64. Comen EA, Robson M. Poly (ADP-ribose) polymerase inhibitors in triple-negative breast cancer. Cancer J (Sudbury, Mass). 2010;16(1):48.

    Article  CAS  Google Scholar 

  65. Kraus WL. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol. 2008;20(3):294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.

    Article  CAS  PubMed  Google Scholar 

  67. Rakha EA, El-Sheikh SE, Kandil MA, El-Sayed ME, Green AR, Ellis IO. Expression of BRCA1 protein in breast cancer and its prognostic significance. Hum Pathol. 2008;39(6):857–65.

    Article  CAS  PubMed  Google Scholar 

  68. Wilson CA, Ramos L, Villaseñor MR, Anders KH, Press MF, Clarke K, Karlan B, et al. Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat Genet. 1999;21(2):236–40.

    Article  CAS  PubMed  Google Scholar 

  69. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25(43):5846–53.

    Article  CAS  PubMed  Google Scholar 

  70. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, Savage K, et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 2007;26(14):2126–32.

    Article  CAS  PubMed  Google Scholar 

  71. Catteau A, Harris WH, Chun-Fang Xu, Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene. 1999;18(11):1957–65.

    Article  CAS  PubMed  Google Scholar 

  72. Rice JuddC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW. Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis. 2000;21(9):1761–5.

    Article  CAS  PubMed  Google Scholar 

  73. Baldassarre G, Battista S, Belletti B, Thakur S, Pentimalli F, Trapasso F, Fedele M, Pierantoni G, Croce CM, Fusco A. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol. 2003;23(7):2225–38.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, Lopez BS, Lidereau R, Mikaélian I, Mazoyer S. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011;3(5):279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Matamala N, Vargas MT, González-Cámpora R, Arias JI, Menéndez P, Andrés-León E, Yanowsky K, et al. MicroRNA deregulation in triple negative breast cancer reveals a role of miR-498 in regulating BRCA1 expression. Oncotarget. 2016;7(15):20068.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, Sledge GW, Carey LA. Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008;14(24):8010–8.

    Article  CAS  PubMed  Google Scholar 

  77. Calabrese CR, Almassy R, Barton S, Batey MA, Hilary Calvert A, Canan-Koch S, Durkacz BW, et al. Anticancer chemosensitization and radiosensitization by the novel poly (ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst. 2004;96(1):56–67.

    Article  CAS  PubMed  Google Scholar 

  78. Tentori L, Portarena I, Bonmassar E, Graziani G. Combined effects of adenovirus-mediated wild-type p53 transduction, temozolomide and poly (ADP-ribose) polymerase inhibitor in mismatch repair deficient and non-proliferating tumor cells. Cell Death Differ. 2001;8(5):457–69.

    Article  CAS  PubMed  Google Scholar 

  79. Tentori L, Portarena I, Vernole P, De Fabritiis P, Madaio R, Balduzzi A, Roy R, et al. Effects of single or split exposure of leukemic cells to temozolomide, combined with poly (ADP-ribose) polymerase inhibitors on cell growth, chromosomal aberrations and base excision repair components. Cancer Chemother Pharmacol. 2001;47(4):361–9.

    Article  CAS  PubMed  Google Scholar 

  80. Delaney CA, Wang L-Z, Kyle S, White AW, Calvert AH, Curtin NJ, Durkacz BW, Hostomsky Z, Newell DR. "Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly (adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res. 2000;6(7):2860–7.

    CAS  PubMed  Google Scholar 

  81. Yung TMC, Sato S, Satoh MS. Poly (ADP-ribosyl) ation as a DNA damage-induced post-translational modification regulating poly (ADP-ribose) polymerase-1-topoisomerase I interaction. J Biol Chem. 2004;279(38):39686–96.

    Article  CAS  PubMed  Google Scholar 

  82. Malanga M, Althaus FR. Poly (ADP-ribose) reactivates stalled DNA topoisomerase I and induces DNA strand break resealing. J Biol Chem. 2004;279(7):5244–8.

    Article  CAS  PubMed  Google Scholar 

  83. O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, Koo IC, Sherman BM, Bradley C. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med. 2011;364(3):205–14.

    Article  CAS  PubMed  Google Scholar 

  84. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee K-H, Fehrenbacher L, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–63.

    Article  CAS  PubMed  Google Scholar 

  85. Robson ME, Tung N, Conte P, Im S-A, Senkus E, Xu B, Masuda N, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30(4):558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Javle M, Curtin NJ. The potential for poly (ADP-ribose) polymerase inhibitors in cancer therapy. Ther Adv Med Oncol. 2011;3(6):257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Murai J, Huang S-Y, Renaud A, Zhang Y, Ji J, Takeda S, Morris J, Teicher B, Doroshow JH, Pommier Y. Stereospecific PARP Trapping by BMN 673 and comparison with Olaparib and RucaparibPARP trapping by BMN 673. Mol Cancer Ther. 2014;13(2):433–43.

    Article  CAS  PubMed  Google Scholar 

  88. Topatana W, Juengpanich S, Li S, Cao J, Jiahao Hu, Lee J, Suliyanto K, et al. Advances in synthetic lethality for cancer therapy: Cellular mechanism and clinical translation. J Hematol Oncol. 2020;13(1):1–22.

    Article  Google Scholar 

  89. Beijersbergen RL, Wessels LFA, Bernards R. Synthetic lethality in cancer therapeutics. Annu Rev Cancer Biol. 2017;1:141–61.

    Article  Google Scholar 

  90. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265–79.

    Article  CAS  PubMed  Google Scholar 

  91. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AOH, Zander SAL, Derksen PWB, et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci. 2008;105(44):17079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Willers H, Taghian AG, Luo C-M, Treszezamsky A, Sgroi DC, Powell SN. Utility of DNA repair protein foci for the detection of putative BRCA1 pathway defects in breast cancer biopsies. Mol Cancer Res. 2009;7(8):1304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS, Ashworth A. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451(7182):1111–5.

    Article  CAS  PubMed  Google Scholar 

  94. Yazinski SA, Comaills V, Buisson R, Genois M-M, Nguyen HD, Ho CK, Kwan TT, et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017;31(3):318–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Coussy F, El-Botty R, Château-Joubert S, Dahmani A, Montaudon E, Leboucher S, Morisset L, et al. BRCAness, SLFN11, and RB1 loss predict response to topoisomerase I inhibitors in triple-negative breast cancers. Sci Transl Med. 2020;12(531):eaax2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zimmer AS, Gillard M, Lipkowitz S, Lee J-M. Update on PARP inhibitors in breast cancer. Curr Treat Options Oncol. 2018;19:1–19.

    Article  Google Scholar 

  97. Tung NM, Robson ME, Ventz S, Santa-Maria CA, Nanda R, Marcom PK, Shah PD, et al. TBCRC 048: phase II study of olaparib for metastatic breast cancer and mutations in homologous recombination-related genes. J Clin Oncol. 2020;38(36):4274–82.

    Article  CAS  PubMed  Google Scholar 

  98. Li Y, Zhan Z, Yin X, Fu S, Deng X. Targeted therapeutic strategies for triple-negative breast cancer. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.731535.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhu D, Shuichan Xu, Deyanat-Yazdi G, Peng SX, Barnes LA, Narla RK, Tran T, et al. Synthetic lethal strategy identifies a potent and selective TTK and CLK1/2 inhibitor for treatment of triple-negative breast cancer with a compromised G1–S checkpoint. Mol Cancer Ther. 2018;17(8):1727–38.

    Article  CAS  PubMed  Google Scholar 

  100. Jeong S. SR proteins: binders, regulators, and connectors of RNA. Mol Cells. 2017;40(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yoshida T, Kim JH, Carver K, Ying Su, Weremowicz S, Mulvey L, Yamamoto S, et al. CLK2 is an oncogenic kinase and splicing regulator in breast cancer. Can Res. 2015;75(7):1516–26.

    Article  CAS  Google Scholar 

  102. Xu Q, Yali Xu, Pan Bo, Liangcai Wu, Ren X, Zhou Y, Mao F, et al. TTK is a favorable prognostic biomarker for triple-negative breast cancer survival. Oncotarget. 2016;7(49):81815.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol. 2018;15(9):564–76.

    Article  CAS  PubMed  Google Scholar 

  105. Erber J, Steiner JD, Isensee J, Lobbes LA, Toschka A, Beleggia F, Schmitt A, et al. Dual inhibition of GLUT1 and the ATR/CHK1 kinase axis displays synergistic cytotoxicity in KRAS-mutant cancer cellssynergistic interaction between GLUT1 and the ATR/CHK1 axis. Can Res. 2019;79(19):4855–68.

    Article  CAS  Google Scholar 

  106. López-Vallejo F, Caulfield T, Martínez-Mayorga K, Giulianotti MA, Nefzi A, Houghten RA, Medina-Franco JL. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb Chem High Throughput Screen. 2011;14(6):475–87.

    Article  PubMed  Google Scholar 

  107. Chari S, Dworkin I. The conditional nature of genetic interactions: the consequences of wild-type backgrounds on mutational interactions in a genome-wide modifier screen. PLoS Genet. 2013;9(8):e1003661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ryan CJ, Mehta I, Kebabci N, Adams DJ (2023) Targeting synthetic lethal paralogs in cancer. Trends Cancer. https://doi.org/10.1016/j.trecan.2023.02.002

Download references

Acknowledgements

The authors sincerely thank the management of Bethune College, Vellore Institute of Technology, Vellore, and the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing all the necessary amenities required for the development of this computational work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Ray.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest during the course of this work.

Research involving human participants and/or animals

This review article does not contain any animal studies or involve any human participation by any of the authors.

Informed consent

All participants provided informed consent prior to their participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, P., Karn, R., Isaac, A.E. et al. Unveiling the vulnerabilities of synthetic lethality in triple-negative breast cancer. Clin Transl Oncol 25, 3057–3072 (2023). https://doi.org/10.1007/s12094-023-03191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03191-9

Keywords

Navigation