Skip to main content

Advertisement

Log in

Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Obesity may create a mitogenic microenvironment that influences tumor initiation and progression. The obesity-associated adipokine, leptin regulates energy metabolism and has been implicated in cancer development. It has been shown that some cell types other than adipocytes can express leptin and leptin receptors in tumor microenvironments. It has been shown that peroxisome proliferator-activated receptors (PPAR) agonists can affect leptin levels and vice versa leptin can affect PPARs. Activation of PPARs affects the expression of several genes involved in aspects of lipid metabolism. In addition, PPARs regulate cancer cell progression through their action on the tumor cell proliferation, metabolism, and cellular environment. Some studies have shown an association between obesity and several types of cancer, including breast cancer. There is some evidence that suggests that there is crosstalk between PPARs and leptin during the development of breast cancer. Through a systematic review of previous studies, we have reviewed the published relevant articles regarding leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 

Similar content being viewed by others

References

  1. Azamjah N, Soltan-Zadeh Y, Zayeri F. Global trend of breast cancer mortality rate: A 25-Year Study. Asian Pacific Journal Cancer Prevent APJCP Asian Pacific Organization for Cancer Prevention 2019 [cited 2021 Apr 19];20:2015–20.

  2. Sauer S, Reed DR, Ihnat M, Hurst RE, Warshawsky D, Barkan D. Innovative approaches in the battle against cancer recurrence: novel strategies to combat dormant disseminated tumor cells. Front Oncol. 2021;11:659963.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Taliaferro-Smith LT, Nagalingam A, Knight BB, Oberlick E, Saxena NK, Sharma D. Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis. Neoplasia (United States). 2013;15:23–38.

    Article  CAS  Google Scholar 

  4. Atoum MF, Alzoughool F, Al-Hourani H. Linkage Between Obesity Leptin and Breast Cancer. Breast Cancer Basic Clin Res. 2020;14:1178223419898458.

    Article  Google Scholar 

  5. Blair CK, Wiggins CL, Nibbe AM, Storlie CB, Prossnitz ER, Royce M, et al. Obesity and survival among a cohort of breast cancer patients is partially mediated by tumor characteristics. NPJ Breast Cancer. 2019;5:1–7.

    Article  Google Scholar 

  6. Uranga RM, Keller JN. The complex interactions between obesity, metabolism and the brain. Front Neurosci. 2019. https://doi.org/10.3389/fnins.2019.00513.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andò S, Gelsomino L, Panza S, Giordano C, Bonofiglio D, Barone I, et al. Obesity, leptin and breast cancer: Epidemiological evidence and proposed mechanisms. Cancers. 2019;11:1–27.

    Article  Google Scholar 

  8. Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochimica et Biophysica Acta Rev Cancer. 2012;1825:207–22.

    Article  CAS  Google Scholar 

  9. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Investig. 2003;112:1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig. 2007;117:175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilbert CA, Slingerland JM. Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression. Annu Rev Med. 2013;64:45–57.

    Article  CAS  PubMed  Google Scholar 

  12. Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer. 2012;12:181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gou Q, Gong X, Jin J, Shi J, Hou Y. Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget. 2017;8:60704–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Törüner F, Akbay E, Çakir N, Sancak B, Elbeg Ş, Taneri F, et al. Effects of PPARγ and PPAR α agonists on serum leptin levels in diet-induced obese rats. Horm Metab Res. 2004;36:226–30.

    Article  PubMed  Google Scholar 

  15. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Investig. 1998;101:1354–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang B, Graziano MP, Doebber TW, Leibowitz MD, White-Carrington S, Szalkowski DM, et al. Down-regulation of the expression of the obese gene by an antidiabetic thiazolidinedione in zucker diabetic fatty rats and db/db Mice. J Biol Chem. 1996;271:9455–9.

    Article  CAS  PubMed  Google Scholar 

  17. Abbasi A, Moghadam AA, Kahrarian Z, Abbsavaran R, Yari K, Alizadeh E. Molecular effects of leptin on peroxisome proliferator activated receptor gamma (PPAR-γ) mRNA expression in rat’s adipose and liver tissue. Cell Mol Biol (Noisy-le-grand). 2017;63:89.

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Shao YY, Ballock RT. Leptin antagonizes peroxisome proliferator-activated receptor-γ signaling in growth plate chondrocytes. PPAR Res. 2012;2012:1–9.

    Article  Google Scholar 

  19. Catalano S, Mauro L, Bonofiglio D, Pellegrino M, Qi H, Rizza P, et al. In vivo and in vitro evidence that PPARγ Ligands are antagonists of leptin signaling in breast cancer. Am J Pathol. 2011;179:1030–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Terrasi M, Bazan V, Caruso S, Insalaco L, Amodeo V, Fanale D, et al. Effects of PPARγ agonists on the expression of leptin and vascular endothelial growth factor in breast cancer cells. J Cell Physiol. 2013;228:1368–74.

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and breast cancer: role of leptin. Front Oncol. 2019;9:1–12.

    Article  Google Scholar 

  22. Teucher B, Rohrmann S, Kaaks R. Obesity: focus on all-cause mortality and cancer. Maturitas. 2010;65:112–6.

    Article  PubMed  Google Scholar 

  23. Paz-Filho G. Associations between adipokines and obesity-related cancer. Front Biosci. 2011;16:1634.

    Article  CAS  Google Scholar 

  24. Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, Golaszewska J, et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin Cancer Res. 2006;12:1447–53.

    Article  CAS  PubMed  Google Scholar 

  25. Neuhouser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, et al. Overweight, obesity, and postmenopausal invasive breast cancer risk. JAMA Oncol. 2015;1:611.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chlebowski RT, Aiello E, McTiernan A. Weight loss in breast cancer patient management. J Clin Oncol. 2002;20:1128–43.

    Article  PubMed  Google Scholar 

  27. Haakinson DJ, Leeds SG, Dueck AC, Gray RJ, Wasif N, Stucky C-CH, et al. The impact of obesity on breast cancer: a retrospective review. Ann Surg Oncol 2012;19:3012–8.

  28. Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the breast cancer association consortium studies. JNCI. 2011;103:250–63.

    Article  PubMed  Google Scholar 

  29. Pierobon M, Frankenfeld CL. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;137:307–14.

    Article  PubMed  Google Scholar 

  30. Chang S, Buzdar AU, Hursting SD. Inflammatory breast cancer and body mass index. J Clin Oncol. 1998;16:3731–5.

    Article  CAS  PubMed  Google Scholar 

  31. Schairer C, Li Y, Frawley P, Graubard BI, Wellman RD, Buist DSM, et al. Risk factors for inflammatory breast cancer and other invasive breast cancers. JNCI. 2013;105:1373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Atkinson RL, El-Zein R, Valero V, Lucci A, Bevers TB, Fouad T, et al. Epidemiological risk factors associated with inflammatory breast cancer subtypes. Cancer Causes Control. 2016;27:359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Druesne-Pecollo N, Touvier M, Barrandon E, Chan DSM, Norat T, Zelek L, et al. Excess body weight and second primary cancer risk after breast cancer: a systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat. 2012;135:647–54.

    Article  PubMed  Google Scholar 

  34. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults. New England J Med. 2003;348:1625–38.

    Article  Google Scholar 

  35. Chan DSM, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, et al. Body mass index and survival in women with breast cancer—systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25:1901–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vance V, Mourtzakis M, McCargar L, Hanning R. Weight gain in breast cancer survivors: prevalence, pattern and health consequences. Obes Rev. 2011;12:282–94.

    Article  CAS  PubMed  Google Scholar 

  37. Demark-Wahnefried W, Campbell KL, Hayes SC. Weight management and its role in breast cancer rehabilitation. Cancer. 2012;118:2277–87.

    Article  PubMed  Google Scholar 

  38. Nichols HB, Trentham-Dietz A, Egan KM, Titus-Ernstoff L, Holmes MD, Bersch AJ, et al. Body mass index before and after breast cancer diagnosis: associations with all-cause, breast cancer, and cardiovascular disease mortality. Cancer Epidemiol Biomark Prev. 2009;18:1403–9.

    Article  Google Scholar 

  39. Kroenke CH, Chen WY, Rosner B, Holmes MD. Weight, weight gain, and survival after breast cancer diagnosis. J Clin Oncol. 2005;23:1370–8.

    Article  PubMed  Google Scholar 

  40. Protani M, Coory M, Martin JH. Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat. 2010;123:627–35.

    Article  PubMed  Google Scholar 

  41. Watson CJ. Key stages in mammary gland development - Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 2006;8:203.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hughes L, Mansel R, Webster DT. Aberrations of normal development and involution (andi): a new perspective on pathogenesis and nomenclature of benign breast disorders. The Lancet. 1987;330:1316–9.

    Article  Google Scholar 

  43. Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 2013;19:6074–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fletcher SJ, Sacca PA, Pistone-Creydt M, Coló FA, Serra MF, Santino FE, et al. Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer. J Exp Clin Cancer Res. 2017;36:26.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, et al. Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res. 2020;39:156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity Rev. 2007;8:21–34.

    Article  CAS  Google Scholar 

  48. Señarís R, Garcia-Caballero T, Casabiell X, Gallego R, Castro R, Considine RV, et al. Synthesis of leptin in human placenta. Endocrinology. 1997;138:4501–4.

    Article  PubMed  Google Scholar 

  49. Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau J-P, Bortoluzzi M-N, et al. The stomach is a source of leptin. Nature. 1998;394:790–3.

    Article  CAS  PubMed  Google Scholar 

  50. Lin T-C, Lee T-C, Hsu S-L, Yang C-S. The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast. PLoS ONE. 2011;6: e16654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature. 1998;393:684–8.

    Article  CAS  PubMed  Google Scholar 

  52. Liu E, Samad F, Mueller BM. Local adipocytes enable estrogen-dependent breast cancer growth. Adipocyte. 2013;2:165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andò S, Catalano S. The multifactorial role of leptin in driving the breast cancer microenvironment. Nat Rev Endocrinol. 2012;8:263–75.

    Article  Google Scholar 

  54. Amjadi F, Mehdipoor R, Zarkesh-Esfahani H, Javanmard S. Leptin serves as angiogenic/mitogenic factor in melanoma tumor growth. Adv Biomed Res. 2016;5:127.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. Leptin, obesity and breast cancer: progress to understanding the molecular connections. Curr Opin Pharmacol. 2016;31:83–9.

    Article  CAS  PubMed  Google Scholar 

  56. Giordano C, Barone I, Vircillo V, Panza S, Malivindi R, Gelsomino L, et al. Activated FXR inhibits leptin signaling and counteracts tumor-promoting activities of cancer-associated fibroblasts in breast malignancy. Sci Rep. 2016;6:21782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barone I, Catalano S, Gelsomino L, Marsico S, Giordano C, Panza S, et al. Leptin mediates tumor-stromal interactions that promote the invasive growth of breast cancer cells. Can Res. 2012;72:1416–27.

    Article  CAS  Google Scholar 

  58. Giordano C, Chemi F, Panza S, Barone I, Bonofiglio D, Lanzino M, et al. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget. 2016;7:1262–75.

    Article  PubMed  Google Scholar 

  59. Wolfson B. Adipocyte activation of cancer stem cell signaling in breast cancer. World J Biol Chem. 2015;6:39.

    Article  PubMed  PubMed Central  Google Scholar 

  60. VanSaun MN. Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res. 2013;19:1926–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghasemi A, Saeidi J, Azimi-Nejad M, Hashemy SI. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol. 2019;42:243–60.

    Article  CAS  Google Scholar 

  62. AndA S, Barone I, Giordano C, Bonofiglio D, Catalano S. The multifaceted mechanism of leptin signaling within tumor microenvironment in driving breast cancer growth and progression. Front Oncol. 2014. https://doi.org/10.3389/fonc.2014.00340.

    Article  Google Scholar 

  63. Yan D, Avtanski D, Saxena NK, Sharma D. Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires β-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. J Biol Chem. 2012;287:8598–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Knight BB, Oprea-Ilies GM, Nagalingam A, Yang L, Cohen C, Saxena NK, et al. Survivin upregulation, dependent on leptin–EGFR–Notch1 axis, is essential for leptin-induced migration of breast carcinoma cells. Endocr Relat Cancer. 2011;18:413–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo S, Gonzalez-Perez RR. Notch, IL-1 and Leptin crosstalk outcome (NILCO) is critical for leptin-induced proliferation, migration and VEGF/VEGFR-2 expression in breast cancer. PLoS ONE. 2011;6: e21467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krishna BM, Jana S, Singhal J, Horne D, Awasthi S, Salgia R, et al. Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Lett. 2019;461:123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang W, Nag SA, Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr Med Chem. 2015;22:264–89.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2012;1825:207–22.

  69. Sarkar DK, Jana D, Patil PS, Chaudhari KS, Chattopadhyay BK, Chikkala BR, et al. Role of NF-κB as a prognostic marker in breast cancer: a pilot study in Indian patients. Indian J Surg Oncol. 2013;4:242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014;2:823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, et al. NF- B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci. 2004;101:10137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ, Sledge GW. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol. 1997;17:3629–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mattace Raso G, Esposito E, Iacono A, Pacilio M, Coppola A, Bianco G, et al. Leptin induces nitric oxide synthase type II in C6 glioma cells. Neurosci Lett. 2006;396:121–6.

    Article  CAS  PubMed  Google Scholar 

  74. Yeh W-L, Lu D-Y, Lee M-J, Fu W-M. Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia. 2009;57:454–64.

    Article  PubMed  Google Scholar 

  75. Li K, Wei L, Huang Y, Wu Y, Su M, Pang X, et al. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol. 2016;48:2479–87.

    Article  CAS  PubMed  Google Scholar 

  76. Gonzalez-Perez RR, Xu Y, Guo S, Watters A, Zhou W, Leibovich SJ. Leptin upregulates VEGF in breast cancer via canonic and non-canonical signalling pathways and NFκB/HIF-1α activation. Cell Signal. 2010;22:1350–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gonzalez RR, Cherfils S, Escobar M, Yoo JH, Carino C, Styer AK, et al. Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J Biol Chem. 2006;281:26320–8.

    Article  CAS  PubMed  Google Scholar 

  78. Zhou W, Guo S, Gonzalez-Perez RR. Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. British Journal of Cancer. Nature Publishing Group; 2011;104:128–37.

  79. Rene Gonzalez R, Watters A, Xu Y, Singh UP, Mann DR, Rueda BR, et al. Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res. 2009;11:1–12.

    Article  Google Scholar 

  80. Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, et al. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther. 2018;11:2063–73.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gilmore TD, Herscovitch M. Inhibitors of NF-κB signaling: 785 and counting. Oncogene. 2006;25:6887–99.

    Article  CAS  PubMed  Google Scholar 

  82. Korbecki J, Bobiński R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res. 2019;68:443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang N, Chu ESH, Zhang J, Li X, Liang Q, Chen J, et al. Peroxisome proliferator activated receptor alpha inhibits hepatocarcinogenesis through mediating NF-κB signaling pathway. Oncotarget. 2014;5:8330–40.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 2000;497–505.

  85. Dana N, Vaseghi G, Haghjooy-Javanmard S. Crosstalk between peroxisome proliferator-activated receptors and Toll-like receptors: a systematic review. Adv Pharmaceut Bull. 2019;9:12–21.

    Article  CAS  Google Scholar 

  86. Tyagi S, Sharma S, Gupta P, Saini A, Kaushal C. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharmaceut Technol Res. 2011;2:236.

    Article  CAS  Google Scholar 

  87. Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front Endocrinol. 2021. https://doi.org/10.3389/fendo.2021.624112.

    Article  Google Scholar 

  88. Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5:749–59.

    Article  CAS  PubMed  Google Scholar 

  89. Naugler WE, Karin M. NF-κB and cancer—identifying targets and mechanisms. Curr Opin Genet Dev. 2008;18:19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Michalik L, Wahli W. PPARs mediate lipid signaling in inflammation and cancer. PPAR Res. 2008;1.

  91. Zúñiga J, Cancino M, Medina F, Varela P, Vargas R, Tapia G, et al. N-3 PUFA supplementation triggers PPAR-α activation and PPAR-α/NF-κB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury. PLoS ONE. 2011;6: e28502.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chung SW, Kang BY, Kim SH, Pak YK, Cho D, Trinchieri G, et al. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-γ and nuclear factor-κB. J Biol Chem. 2000;275:32681–7.

    Article  CAS  PubMed  Google Scholar 

  93. Hou Y, Moreau F, Chadee K. PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nat Commun. 2012;3:1300.

    Article  PubMed  Google Scholar 

  94. Schmitz ML, Mattioli I, Buss H, Kracht M. NF-κB: A multifaceted transcription factor regulated at several levels. ChemBioChem. 2004;5:1348–58.

    Article  CAS  PubMed  Google Scholar 

  95. Dana N, Haghjooy Javanmard S, Vaseghi G. The effect of fenofibrate, a PPARα activator on toll-like receptor-4 signal transduction in melanoma both in vitro and in vivo. Clin Transl Oncol. 2020;22:486–94.

    Article  CAS  PubMed  Google Scholar 

  96. Dana N, Vaseghi G, Haghjooy JS. PPAR γ agonist, pioglitazone, suppresses melanoma cancer in mice by inhibiting TLR4 signaling. J Pharm Pharmaceut Sci. 2019;22:418–23.

    CAS  Google Scholar 

  97. Dana N, Vaseghi G, Haghjooy JS. Activation of PPARγ inhibits TLR4 signal transduction pathway in melanoma cancer in vitro. Adv Pharmaceut Bull. 2020;10:458–63.

    Article  CAS  Google Scholar 

  98. Li T, Zhang Q, Zhang J, Yang G, Shao Z, Luo J, et al. Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-κB pathway. BMC Cancer. 2014;14:96.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease. 2011;1812:1007–22.

  100. Blaschke F, Takata Y, Caglayan E, Law RE, Hsueh WA. Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in Type 2 diabetes. Arterioscler Thromb Vasc Biol. 2006;26:28–40.

    Article  CAS  PubMed  Google Scholar 

  101. Carpenter DO. Environmental contaminants as risk factors for developing diabetes. Rev Environm Health. 2008. https://doi.org/10.1515/REVEH.2008.23.1.59.

    Article  Google Scholar 

  102. Belfiore A, Genua M, Malaguarnera R. PPAR-γ agonists and their effects on IGF-I receptor signaling: implications for cancer. PPAR Res. 2009;2009:1–18.

    Article  Google Scholar 

  103. Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer. 2015;14:43.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell. 1994;79:1147–56.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang B, Graziano MP, Doebber TW, Leibowitz MD, White-Carrington S, Szalkowski DM, et al. Down-regulation of the expression of the obese gene by an antidiabetic thiazolidinedione in Zucker diabetic fatty rats and db/db mice. J Biol Chem © 1996 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology 1996;271:9455–9.

  106. Al-Alem L, Southard RC, Kilgore MW, Curry TE. Specific thiazolidinediones inhibit ovarian cancer cell line proliferation and cause cell cycle arrest in a PPARγ independent manner. PLoS ONE. 2011;6: e16179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang T, Zhang Q, Chen D, Jiang J, Zhou Q. Growth inhibition of human breast cancer cell line MDA-MB-231 by rosiglitazone through activation of PPARγ. Chin J Clin Oncol. 2008;5:407–12.

    Article  CAS  Google Scholar 

  108. Kallen CB, Lazar MA. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc Natl Acad Sci USA. 1996;93:5793–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ida S, Murata K, Kaneko R. Effects of pioglitazone treatment on blood leptin levels in patients with type 2 diabetes. J Diabetes Investig. 2018;9:917–24.

    Article  CAS  PubMed  Google Scholar 

  110. Nolan JJ, Olefsky JM, Nyce MR, Considine RV, Caro JF. Effect of troglitazone on leptin production: studies in vitro and in human subjects. Diabetes. 1996;45:1276–8.

    Article  CAS  PubMed  Google Scholar 

  111. Rieusset J, Auwerx J, Vidal H. Regulation of gene expression by activation of the peroxisome proliferator-activated receptor γ with rosiglitazone (BRL 49653) in human adipocytes. Biochem Biophys Res Commun. 1999;265:265–71.

    Article  CAS  PubMed  Google Scholar 

  112. Miyazaki Y, DeFronzo RA. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes Metab. 2008;10:1204–11.

    CAS  PubMed  Google Scholar 

  113. Ciaraldi TP, Kong APS, Chu NV, Kim DD, Baxi S, Loviscach M, et al. Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes. 2002;51:30–6.

    Article  CAS  PubMed  Google Scholar 

  114. Williams LB, Fawcett RL, Waechter AS, Zhang P, Kogon BE, Jones RM, et al. Leptin production in adipocytes from morbidly obese subjects: Stimulation by dexamethasone, inhibition with troglitazone, and influence of gender. J Clin Endocrinol Metab. 2000;85:2678–84.

    CAS  PubMed  Google Scholar 

  115. Cabrero À, Cubero M, Llaverías G, Alegret M, Sánchez R, Laguna JC, et al. Leptin down-regulates peroxisome proliferator-activated receptor γ (PPARγ) mRNA levels in primary human monocyte-derived macrophages. Mol Cell Biochem. 2005;275:173–9.

    Article  CAS  PubMed  Google Scholar 

  116. Chawla A. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294:1866–70.

    Article  CAS  PubMed  Google Scholar 

  117. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications - A review. Nutr J. 2014;13:1–10.

    Article  Google Scholar 

  118. Rigano D, Sirignano C, Taglialatela-Scafati O. The potential of natural products for targeting PPARα. Acta Pharmaceutica Sinica B. 2017;7:427–38.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart J-C. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98:2088–93.

    Article  CAS  PubMed  Google Scholar 

  120. Wanders D. Pharmacological effects of lipid-lowering drugs on circulating adipokines. World J Diabetes. 2010;1:116.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Baker BG, Ball GR, Rakha EA, Nolan CC, Caldas C, Ellis IO, et al. Lack of expression of the proteins GMPR2 and PPARα are associated with the basal phenotype and patient outcome in breast cancer. Breast Cancer Res Treat. 2013;137:127–37.

    Article  CAS  PubMed  Google Scholar 

  122. Törüner F, Akbay E, Cakir N, Sancak B, Elbeg S, Taneri F, et al. Effects of PPARgamma and PPARalpha agonists on serum leptin levels in diet-induced obese rats. Horm Metab Res. 2004;36:226–30.

    Article  PubMed  Google Scholar 

  123. Naderali EK, Fatani S, Telles M, Hunter L. The effects of physiological and pharmacological weight loss on adiponectin and leptin mRNA levels in the rat epididymal adipose tissue. Eur J Pharmacol. 2008;579:433–8.

    Article  CAS  PubMed  Google Scholar 

  124. Damci T, Tatliagac S, Osar Z, Ilkova K. Fenofibrate treatment is associated with better glycemic control and lower serum leptin and insulin levels in type 2 diabetic patients with hypertriglyceridemia. Eur J Intern Med. 2003;14:357–60.

    Article  CAS  PubMed  Google Scholar 

  125. Larsen PJ, Jensen PB, Sørensen RV, Larsen LK, Vrang N, Wulff EM, et al. Differential influences of peroxisome proliferator-activated receptorsγ and -α on food intake and energy homeostasis. Diabetes. 2003;52:2249–59.

    Article  CAS  PubMed  Google Scholar 

  126. Kochan Z, Karbowska J, Swierczynski J. Effect of Clofibrate on malic enzyme and leptin mRNAs level in rat brown and white adipose tissue. Horm Metab Res. 1999;31:538–42.

    Article  CAS  PubMed  Google Scholar 

  127. Belfort R, Berria R, Cornell J, Cusi K. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with the metabolic syndrome. J Clin Endocrinol Metab. 2010;95:829–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ray A. Cancer and comorbidity: The role of leptin in breast cancer and associated pathologies. World J Clin Cases. 2018;6:483–92.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, et al. Terminal differentiation of human breast cancer through PPARγ. Mol Cell. 1998;1:465–70.

    Article  CAS  PubMed  Google Scholar 

  130. Okumura M, Yamamoto M, Sakuma H, Kojima T, Maruyama T, Jamali M, et al. Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-α and PPAR expression. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2002;1592:107–16.

  131. Yee LD, Williams N, Wen P, Young DC, Lester J, Johnson MV, et al. Pilot study of rosiglitazone therapy in women with breast cancer: Effects of short-term therapy on tumor tissue and serum markers. Clin Cancer Res. 2007;13:246–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Applied Physiology Research Center of Isfahan University of Medical sciences, Isfahan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaghayegh Haghjooy Javanmard.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical statement

This manuscript does not contain any original experimental data and patient data, and the preclinical and clinical studies cited are published results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dana, N., Ferns, G.A., Nedaeinia, R. et al. Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ. Clin Transl Oncol 25, 601–610 (2023). https://doi.org/10.1007/s12094-022-02988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02988-4

Keywords

Navigation