Skip to main content

Advertisement

Log in

Cartilage oligomeric matrix protein acts as a molecular biomarker in multiple cancer types

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The main function of cartilage oligomeric matrix protein (COMP) is to maintain the synthesis and stability of the extracellular matrix by interacting with collagen. At present, there are relatively few studies on the role of this protein in tumors. This study aimed to explore the relationship between COMP and pan-cancer, and analyzed its diagnostic and prognostic value.

Methods

The Cancer Genome Atlas database, the Genotype-Tissue Expression database and the Cancer Cell Line Encyclopedia database was used for gene expression analysis. The receiver operating characteristic curve was used to assess the diagnostic value of COMP in pan-cancer. Kaplan–Meier plots were used to assess the relationship between COMP expression and prognosis of cancers. R software v4.1.1 was used for statistical analysis, and the ggplot2 package was used for visualization.

Results

COMP was significantly overexpressed in 15 human cancers and showed significantly difference in 12 molecular subtypes and 16 immune subtypes. In addition, the expression of COMP is associated with tumor immune evasion. The ROC curve showed that the expression of COMP could predict the occurrence of 16 kinds of tumors with relative accuracy, including adrenocortical carcinoma (ACC) (AUC = 0.737), breast invasive carcinoma (BRCA) (AUC = 0.896), colon adenocarcinoma (COAD) (AUC = 0.760), colon adenocarcinoma/rectum adenocarcinoma esophageal carcinoma (COADREAD) (AUC = 0.775), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) (AUC = 0.875), kidney renal papillary cell carcinoma (KIRP) (AUC = 0.773), kidney chromophobe (KICH) (AUC = 0.809), ovarian serous cystadenocarcinoma (OV) (AUC = 0.906), prostate adenocarcinoma (PRAD) (AUC = 0.721), pancreatic adenocarcinoma (PAAD) (AUC = 0.944), rectum adenocarcinoma (READ) (AUC = 0.792), skin cutaneous melanoma (SKCM) (AUC = 0.746), stomach adenocarcinoma (STAD) (AUC = 0.711), testicular germ cell tumors (TGCT) (AUC = 0.823), thymoma (THYM) (AUC = 0.777) and uterine carcinosarcoma (UCS) (AUC = 0.769). Furthermore, COMP expression was correlated with overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI) in ACC (OS, HR = 4.95, DSS, HR = 5.55, PFI, HR = 2.79), BLCA (OS, HR = 1.59, DSS, HR = 1.72, PFI, HR = 1.36), KIRC (OS, HR = 1.36, DSS, HR = 1.94, PFI, HR = 1.57) and COADREAD (OS, HR = 1.46, DSS, HR = 1.98, PFI, HR = 1.43). We selected previously unreported bladder urothelial carcinoma (BLCA) for further study and found that COMP could be an independent risk factor for OS, DSS and PFI. Moreover, we found differentially expressed genes of COMP in BLCA and obtained top 10 hub genes, including LGR4, LGR5, RSPO2, RSPO1, RSPO3, RNF43, ZNRF3, FYN, LYN and SYK. Finally, we verified the function of COMP at the cellular level by using J82 and T24 cells and found that knockdown of COMP could significantly inhibit migration and invasion. This finding supports that COMP could be a potential biomarker for pan-cancer diagnosis and prognosis encompassing tumor microenvironment, disease stage and prognosis.

Conclusion

This finding supports that COMP could be a potential biomarker for pan-cancer diagnosis and prognosis encompassing tumor microenvironment, disease stage and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data reported are included and represented in the manuscript.

References

  1. Ugel S, Canè S, De Sanctis F, Bronte V. Monocytes in the tumor microenvironment. Annu Rev Pathol. 2021;16:93–122.

    Article  CAS  Google Scholar 

  2. Höpken U, Rehm A. Targeting the tumor microenvironment of leukemia and lymphoma. Trends in cancer. 2019;5(6):351–64.

    Article  Google Scholar 

  3. Jiang W, Chan C, Weissman I, Kim B, Hahn S. Immune priming of the tumor microenvironment by radiation. Trends in cancer. 2016;2(11):638–45.

    Article  Google Scholar 

  4. Gentles A, Hui A, Feng W, Azizi A, Nair R, Bouchard G, et al. A human lung tumor microenvironment interactome identifies clinically relevant cell-type cross-talk. Genome Biol. 2020;21(1):107.

    Article  CAS  Google Scholar 

  5. Yang L, Li A, Lei Q, Zhang Y. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. J Hematol Oncol. 2019;12(1):125.

    Article  Google Scholar 

  6. Zhou G, Sprengers D, Mancham S, Erkens R, Boor P, van Beek A, et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules. J Hepatol. 2019;71(4):753–62.

    Article  Google Scholar 

  7. Yenyuwadee S, Aliazis K, Wang Q, Christofides A, Shah R, Patsoukis N, et al. Immune cellular components and signaling pathways in the tumor microenvironment. Cancer Biol: Semin; 2022.

    Book  Google Scholar 

  8. Casado-Pelaez M, Bueno-Costa A, Esteller M. Single cell cancer epigenetics. Trends Cancer. 2022;8(10):820–38.

    Article  CAS  Google Scholar 

  9. Acharya C, Yik JH, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol. 2014;37:102–11.

    Article  CAS  Google Scholar 

  10. Tan K, Duquette M, Joachimiak A, Lawler J. The crystal structure of the signature domain of cartilage oligomeric matrix protein: implications for collagen, glycosaminoglycan and integrin binding. FASEB J. 2009;23(8):2490–501.

    Article  CAS  Google Scholar 

  11. Mörgelin M, Heinegård D, Engel J, Paulsson M. Electron microscopy of native cartilage oligomeric matrix protein purified from the Swarm rat chondrosarcoma reveals a five-armed structure. J Biol Chem. 1992;267(9):6137–41.

    Article  Google Scholar 

  12. Farina G, Lemaire R, Korn JH, Widom RL. Cartilage oligomeric matrix protein is overexpressed by scleroderma dermal fibroblasts. Matrix Biol. 2006;25(4):213–22.

    Article  CAS  Google Scholar 

  13. Canfield AE, Farrington C, Dziobon MD, Boot-Handford RP, Heagerty AM, Kumar SN, et al. The involvement of matrix glycoproteins in vascular calcification and fibrosis: an immunohistochemical study. J Pathol. 2002;196(2):228–34.

    Article  CAS  Google Scholar 

  14. Andersson ML, Svensson B, Petersson IF, Hafström I, Albertsson K, Forslind K, et al. Early increase in serum-COMP is associated with joint damage progression over the first five years in patients with rheumatoid arthritis. BMC Musculoskelet Disord. 2013;14:229.

    Article  Google Scholar 

  15. Norman GL, Gatselis NK, Shums Z, Liaskos C, Bogdanos DP, Koukoulis GK, et al. Cartilage oligomeric matrix protein: a novel non-invasive marker for assessing cirrhosis and risk of hepatocellular carcinoma. World J Hepatol. 2015;7(14):1875–83.

    Article  Google Scholar 

  16. Andréasson K, Hesselstrand R, Saxne T, Holmberg A, Norrgren H, Jönsson G. Cartilage oligomeric matrix protein: a new promising biomarker of liver fibrosis in chronic hepatitis C. Infect Dis (Lond). 2015;47(12):915–8.

    Article  Google Scholar 

  17. Liu TT, Liu XS, Zhang M, Liu XN, Zhu FX, Zhu FM, et al. Cartilage oligomeric matrix protein is a prognostic factor and biomarker of colon cancer and promotes cell proliferation by activating the Akt pathway. J Cancer Res Clin Oncol. 2018;144(6):1049–63.

    Article  CAS  Google Scholar 

  18. Englund E, Bartoschek M, Reitsma B, Jacobsson L, Escudero-Esparza A, Orimo A, et al. Cartilage oligomeric matrix protein contributes to the development and metastasis of breast cancer. Oncogene. 2016;35(43):5585–96.

    Article  CAS  Google Scholar 

  19. Wang L, Huang J, Jiang M, Diao H, Zhou H, Li X, et al. Cartilage oligomeric matrix protein (COMP)-mediated cell differentiation to proteolysis mechanism networks from human normal adjacent tissues to lung adenocarcinoma. Anal Cell Pathol (Amst). 2013;36(3–4):93–105.

    Article  CAS  Google Scholar 

  20. Yamanokuchi K, Yabuki A, Yoshimoto Y, Arai K, Fujiki M, Misumi K. Gene and protein expression of cartilage oligomeric matrix protein associated with oncogenesis in canine tumors. J Vet Med Sci. 2009;71(4):499–503.

    Article  CAS  Google Scholar 

  21. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017;35(4):314–6.

    Article  CAS  Google Scholar 

  22. Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200–2.

    Article  CAS  Google Scholar 

  23. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013. https://doi.org/10.1126/scisignal.2004088.

    Article  Google Scholar 

  24. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  Google Scholar 

  25. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

    Article  CAS  Google Scholar 

  26. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  Google Scholar 

  27. Morozzi G, Fabbroni M, Bellisai F, Pucci G, Galeazzi M. Cartilage oligomeric matrix protein level in rheumatic diseases: potential use as a marker for measuring articular cartilage damage and/or the therapeutic efficacy of treatments. Ann N Y Acad Sci. 2007;1108:398–407.

    Article  CAS  Google Scholar 

  28. Hecht JT, Veerisetty AC, Hossain MG, Patra D, Chiu F, Coustry F, et al. Joint degeneration in a mouse model of pseudoachondroplasia: er stress, inflammation, and block of autophagy. Int J Mol Sci. 2021;22(17):9239.

    Article  CAS  Google Scholar 

  29. Rochoux Q, Santos S-DJ, Marcelli C, Rovelet-Lecrux A, Chevallier V, Dutheil JJ et al. Description of joint alterations observed in a family carrying pasn453ser comp variant: clinical phenotypes, in silico prediction of functional impact on comp protein and stability, and review of the literature. Biomolecules. 2021;11(10):1460.

    Article  CAS  Google Scholar 

  30. Majeed M, Nagabhushanam K, Lawrence L, Nallathambi R, Thiyagarajan V, Mundkur L. Boswellia serrata extract containing 30% 3-acetyl-11-keto-boswellic acid attenuates inflammatory mediators and preserves extracellular matrix in collagen-induced arthritis. Front Physiol. 2021;12: 735247.

    Article  Google Scholar 

  31. Tseng S, Reddi AH, Di Cesare PE. Cartilage oligomeric matrix protein (COMP): a biomarker of arthritis. Biomark Insights. 2009;4:33–44.

    Article  CAS  Google Scholar 

  32. Chen J, Ali MW, Yan L, Dighe SG, Dai JY, Vaughan TL, et al. Prioritization and functional analysis of GWAS risk loci for Barrett’s esophagus and esophageal adenocarcinoma. Hum Mol Genet. 2021. https://doi.org/10.1093/hmg/ddab259.

    Article  Google Scholar 

  33. Lu Y, Kong X, Zhong W, Hu M, Li C. Diagnostic, therapeutic, and prognostic value of the thrombospondin family in gastric cancer. Front Mol Biosci. 2021;8:647095.

    Article  CAS  Google Scholar 

  34. Papadakos KS, Darlix A, Jacot W, Blom AM. High levels of cartilage oligomeric matrix protein in the serum of breast cancer patients can serve as an independent prognostic marker. Front Oncol. 2019;9:1141.

    Article  Google Scholar 

  35. Zhang J, Wang H, Lv C, Han J, Hao M, Li J, et al. Cartilage oligomeric matrix protein affects the biological behavior of papillary thyroid carcinoma cells by activating the PI3K/AKT/Bcl-2 pathway. J Cancer. 2021;12(6):1623–33.

    Article  CAS  Google Scholar 

  36. Gatselis NK, Zachou K, Giannoulis G, Gabeta S, Norman GL, Dalekos GN. Serum cartilage oligomeric matrix protein and golgi protein-73: new diagnostic and predictive tools for liver fibrosis and hepatocellular cancer? Cancers (Basel). 2021;13(14):3510.

    Article  CAS  Google Scholar 

  37. Magdaleno F, Arriazu E, Ruiz de Galarreta M, Chen Y, Ge X, Conde de la Rosa L, et al. Cartilage oligomeric matrix protein participates in the pathogenesis of liver fibrosis. J Hepatol. 2016;65(5):963–71.

    Article  CAS  Google Scholar 

  38. Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F, et al. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1(+) TAMs. Sci Rep. 2019;9(1):3172.

    Article  Google Scholar 

  39. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.

    Article  CAS  Google Scholar 

  40. LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Disease models & mechanisms 2018;11(4):dmm029447.

  41. Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018;15(6):366–81.

    Article  Google Scholar 

  42. Ruan Y, Ogana H, Gang E, Kim HN, Kim YM. Wnt signaling in the tumor microenvironment. Adv Exp Med Biol. 2021;1270:107–21.

    Article  CAS  Google Scholar 

  43. Benon A, Ya C, Martin L, Watrin C, Chounlamountri N, Jaaoini I, et al. The syk kinases orchestrate cerebellar granule cell tangential migration. Neuroscience. 2017;360:230–9.

    Article  CAS  Google Scholar 

  44. Zhong W, Hou H, Liu T, Su S, Xi X, Liao Y, et al. Cartilage oligomeric matrix protein promotes epithelial-mesenchymal transition by interacting with transgelin in colorectal cancer. Theranostics. 2020;10(19):8790–806.

    Article  CAS  Google Scholar 

  45. Papadakos KS, Bartoschek M, Rodriguez C, Gialeli C, Jin SB, Lendahl U, et al. Cartilage oligomeric matrix protein initiates cancer stem cells through activation of jagged1-notch3 signaling. Matrix Biol. 2019;81:107–21.

    Article  CAS  Google Scholar 

  46. Li Q, Wang C, Wang Y, Sun L, Liu Z, Wang L, et al. HSCs-derived COMP drives hepatocellular carcinoma progression by activating MEK/ERK and PI3K/AKT signaling pathways. J Exp Clin Cancer Res. 2018;37(1):231.

    Article  CAS  Google Scholar 

  47. Nfonsam VN, Nfonsam LE, Chen D, Omesiete PN, Cruz A, Runyan RB, et al. COMP gene coexpresses with EMT genes and is associated with poor survival in colon cancer patients. J Surg Res. 2019;233:297–303.

    Article  CAS  Google Scholar 

  48. Sheng F, Chen KX, Liu J, Li JX, Liang GH, Xu Y, et al. Chromium (VI) promotes EMT by regulating FLNA in BLCA. Environ Toxicol. 2021;36(8):1694–701.

    Article  CAS  Google Scholar 

  49. Cao R, Yuan L, Ma B, Wang G, Qiu W, Tian Y. An EMT-related gene signature for the prognosis of human bladder cancer. J Cell Mol Med. 2020;24(1):605–17.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (81803541) and Shanghai Science and Technology Development Foundation (22140901900).

Author information

Authors and Affiliations

Authors

Contributions

Bingjie Guo and Yajing Wang contributed equally to the article. Bingjie Guo and Yajing Wang performed the statistical analysis and drew the pictures. Sailong Zhang and Wenyu Liu contributed to the design and writing of the study. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Wenyu Liu or Sailong Zhang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 263 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Wang, Y., Liu, W. et al. Cartilage oligomeric matrix protein acts as a molecular biomarker in multiple cancer types. Clin Transl Oncol 25, 535–554 (2023). https://doi.org/10.1007/s12094-022-02968-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02968-8

Keywords

Navigation