Skip to main content

Advertisement

Log in

Cytokine-driven positive feedback loop organizes fibroblast transformation and facilitates gastric cancer progression

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Gastric cancer (GC) is a malignancy that belongs to one of the most common leading causes of cancer death. Cancer-associated fibroblasts (CAFs) promote the GC cells’ malignant behavior. It is still unknown how GC converts normal fibroblasts (NFs) to CAFs.

Methods

GC cells were co-cultured with NFs. Bioinformatics was used to analyze the genes and signaling pathways that were changed in fibroblast. RT-PCR, western blot, and Elisa assays were used to detect the expression of cytokines in fibroblast and condition medium. Western blot and immunofluorescence demonstrated activation of relevant pathways in CAFs-like cells. Transwell, scrape, colony formation, and CCK-8 assays were performed to reveal the feedback effect of CAFs-like cells on GC cells.

Results

GC promoted the conversion of NFs to CAFs by secreting Interleukin 17A (IL-17). It included both morphological and molecular marker changes. This process was achieved by activating the nuclear factor-κB (NF-κB) pathway. On the other hand, CAFs cells could secrete C-X-C Motif Chemokine Ligand 8 (IL-8, IL-8), which promoted the malignant phenotype of GC cells. In this way, a feedback loop of mutual influence was constructed in the GC and tumor microenvironment (TME).

Conclusions

Our research proved a novel model of GC-educated NFs. GC-IL-17-fibroblast-IL-8-GC axis might be a potential pathway of the interaction between GC and TME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No additional data are available.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA. 2021;71(1):7–33.

    PubMed  Google Scholar 

  2. Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21114012.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Can Res. 2019;79(18):4557–66.

    Article  CAS  Google Scholar 

  4. Zhang Y, Wang S, Lai Q, Fang Y, Wu C, Liu Y, et al. Cancer-associated fibroblasts-derived exosomal miR-17–5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF-β1 positive feedback loop. Cancer Lett. 2020;491:22–35. https://doi.org/10.1016/j.canlet.2020.07.023.

    Article  CAS  PubMed  Google Scholar 

  5. Virchow R. As based upon physiological and pathological histology. Nutr Rev. 1989;47(1):23–5.

    Article  CAS  Google Scholar 

  6. Tarin D, Croft C. Ultrastructural features of wound healing in mouse skin. J Anat. 1969;105(Pt 1):189–90.

    CAS  PubMed  Google Scholar 

  7. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  CAS  Google Scholar 

  8. Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99:186–96.

    Article  CAS  Google Scholar 

  9. Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer. 2020;146(4):895–905. https://doi.org/10.1002/ijc.32193.

    Article  CAS  PubMed  Google Scholar 

  10. Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5(12):1640–6.

    Article  CAS  Google Scholar 

  11. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33(3):463-479. e.10.

    Article  CAS  Google Scholar 

  12. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19(1):43. https://doi.org/10.1186/s12943-020-01168-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishimoto T, Miyake K, Nandi T, Yashiro M, Onishi N, Huang KK, et al. Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells. Gastroenterology. 2017;153(1):191-204.e116. https://doi.org/10.1053/j.gastro.2017.03.046.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Zhou Q, Yu Z, Wu X, Chen X, Li J, et al. Cancer-associated fibroblast-derived Lumican promotes gastric cancer progression via the integrin β1-FAK signaling pathway. Int J Cancer. 2017;141(5):998–1010. https://doi.org/10.1002/ijc.30801.

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Yao L, Qu J, Liu L, Lu N, Wang J, et al. Cancer-associated fibroblast infiltration in gastric cancer: the discrepancy in subtypes pathways and immunosuppression. J Transl Med. 2021;19(1):325. https://doi.org/10.1186/s12967-021-03012-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Itoh G, Chida S, Yanagihara K, Yashiro M, Aiba N, Tanaka M. Cancer-associated fibroblasts induce cancer cell apoptosis that regulates invasion mode of tumours. Oncogene. 2017;36(31):4434–44. https://doi.org/10.1038/onc.2017.49.

    Article  CAS  PubMed  Google Scholar 

  17. Karakasheva TA, Lin EW, Tang Q, Qiao E, Waldron TJ, Soni M, et al. IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment. Cancer Res. 2018;78(17):4957–70. https://doi.org/10.1158/0008-5472.Can-17-2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piao CH, Song CH, Lee EJ, Chai OH. Saikosaponin A ameliorates nasal inflammation by suppressing IL-6/ROR-γt/STAT3/IL-17/NF-κB pathway in OVA-induced allergic rhinitis. Chem Biol Interact. 2020;315:108874. https://doi.org/10.1016/j.cbi.2019.108874.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang D, Li L, Jiang H, Li Q, Wang-Gillam A, Yu J, et al. Tumor-stroma IL1β-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer. Cancer Res. 2018;78(7):1700–12. https://doi.org/10.1158/0008-5472.Can-17-1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41. https://doi.org/10.1016/j.immuni.2019.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuzet SE, Gaggioli C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res. 2016;365(3):607–19. https://doi.org/10.1007/s00441-016-2467-x.

    Article  CAS  PubMed  Google Scholar 

  22. Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 2017;36(13):1770–8. https://doi.org/10.1038/onc.2016.353.

    Article  CAS  PubMed  Google Scholar 

  23. Wen S, Hou Y, Fu L, Xi L, Yang D, Zhao M, et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling. Cancer Lett. 2019;442:320–32. https://doi.org/10.1016/j.canlet.2018.10.015.

    Article  CAS  PubMed  Google Scholar 

  24. Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932–48. https://doi.org/10.7150/thno.25541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertero T, Oldham WM, Grasset EM, Bourget I, Boulter E, Pisano S, et al. Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 2019;29(1):124-140.e110. https://doi.org/10.1016/j.cmet.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

  26. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47(4):320–9. https://doi.org/10.1038/ng.3225.

    Article  CAS  PubMed  Google Scholar 

  27. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538–43. https://doi.org/10.1038/nature25492.

    Article  CAS  PubMed  Google Scholar 

  28. Tarrats N, Moles A, Morales A, García-Ruiz C, Fernández-Checa JC, Marí M. Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology. 2011;54(1):319–27. https://doi.org/10.1002/hep.24388.

    Article  CAS  PubMed  Google Scholar 

  29. Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013;58(4):1461–73. https://doi.org/10.1002/hep.26429.

    Article  CAS  PubMed  Google Scholar 

  30. Bonnardel J, T’Jonck W, Gaublomme D, Browaeys R, Scott CL, Martens L, et al. Stellate cells, hepatocytes, and endothelial cells imprint the kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity. 2019;51(4):638-654.e639. https://doi.org/10.1016/j.immuni.2019.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu YH, Huang YF, Chang TH, Chen CC, Wu PY, Huang SC, et al. COL11A1 activates cancer-associated fibroblasts by modulating TGF-β3 through the NF-κB/IGFBP2 axis in ovarian cancer cells. Oncogene. 2021;40(26):4503–19. https://doi.org/10.1038/s41388-021-01865-8.

    Article  CAS  PubMed  Google Scholar 

  32. Rouvier E, Luciani M, Mattei M, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol. 1993;150(12):5445–56.

    CAS  PubMed  Google Scholar 

  33. Hymowitz SG, Filvaroff EH, Yin J, Lee J, Cai L, Risser P, et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 2001;20(19):5332–41.

    Article  CAS  Google Scholar 

  34. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183(6):2593–603.

    Article  CAS  Google Scholar 

  35. Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS. IL-17 enhances IL-1β-mediated CXCL-8 release from human airway smooth muscle cells. Am J Physiol-Lung Cell Mol Physiol. 2007;292(4):L1023–9.

    Article  CAS  Google Scholar 

  36. Shen F, Hu Z, Goswami J, Gaffen SL. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J Biol Chem. 2006;281(34):24138–48.

    Article  CAS  Google Scholar 

  37. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 2009;31(5):787–98.

    Article  CAS  Google Scholar 

  38. Chen H, Wang W, Xie H, Xu X, Wu J, Jiang Z, et al. A pathogenic role of IL-17 at the early stage of corneal allograft rejection. Transpl Immunol. 2009;21(3):155–61.

    Article  CAS  Google Scholar 

  39. Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, et al. The adaptor Act1 is required for interleukin 17–dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol. 2007;8(3):247–56.

    Article  CAS  Google Scholar 

  40. El-Gedamy M, El-Khayat Z, Abol-Enein H, El-Said A, El-Nahrery E. Rs-10889677 variant in interleukin-23 receptor may contribute to creating an inflammatory milieu more susceptible to bladder tumourigenesis: report and meta-analysis. Immunogenetics. 2021;73(3):207–26. https://doi.org/10.1007/s00251-021-01205-w.

    Article  CAS  PubMed  Google Scholar 

  41. El-Gedamy M, El-Khayat Z, Abol-Enein H, El-Said A, El-Nahrery E. Rs-1884444 G/T variant in IL-23 receptor is likely to modify risk of bladder urothelial carcinoma by regulating IL-23/IL-17 inflammatory pathway. Cytokine. 2021;138:155355. https://doi.org/10.1016/j.cyto.2020.155355.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng J, Jiang L, Zhang L, Yang L, Deng J, You Y, et al. Functional genetic variations in the IL-23 receptor gene are associated with risk of breast, lung and nasopharyngeal cancer in Chinese populations. Carcinogenesis. 2012;33(12):2409–16. https://doi.org/10.1093/carcin/bgs307.

    Article  CAS  PubMed  Google Scholar 

  43. Amatya N, Garg AV, Gaffen SL. IL-17 signaling: the yin and the yang. Trends Immunol. 2017;38(5):310–22.

    Article  CAS  Google Scholar 

  44. Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A, et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-κB and C/EBPβ activation. J Biol Chem. 2007;282(37):27229–38.

    Article  CAS  Google Scholar 

  45. Liu C, Qian W, Qian Y, Giltiay NV, Lu Y, Swaidani S, et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal. 2009;2(92):ra63.

    Article  Google Scholar 

  46. Peveri P, Walz A, Dewald B, Baggiolini M. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J Exp Med. 1988;167(5):1547–59.

    Article  CAS  Google Scholar 

  47. Ha H, Debnath B, Neamati N. Role of the IL-8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7(6):1543.

    Article  CAS  Google Scholar 

  48. Veltri RW, Miller MC, Zhao G, Ng A, Marley GM, Wright GL Jr, et al. Interleukin-8 serum levels in patients with benign prostatic hyperplasia and prostate cancer. Urology. 1999;53(1):139–47.

    Article  CAS  Google Scholar 

  49. Zhang G, Gomes-Giacoia E, Dai Y, Lawton A, Miyake M, Furuya H, et al. Validation and clinicopathologic associations of a urine-based bladder cancer biomarker signature. Diagn Pathol. 2014;9(1):1–10.

    Google Scholar 

  50. Tong H, Ke J-Q, Jiang F-Z, Wang X-J, Wang F-Y, Li Y-R, et al. Tumor-associated macrophage-derived IL-8 could induce ERα suppression via HOXB13 in endometrial cancer. Cancer Lett. 2016;376(1):127–36.

    Article  CAS  Google Scholar 

  51. New J, Arnold L, Ananth M, Alvi S, Thornton M, Werner L, et al. Secretory autophagy in cancer-associated fibroblasts promotes head and neck cancer progression and offers a novel therapeutic target. Cancer Res. 2017;77(23):6679–91. https://doi.org/10.1158/0008-5472.Can-17-1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liubomirski Y, Lerrer S, Meshel T, Morein D, Rubinstein-Achiasaf L, Sprinzak D, et al. Notch-mediated tumor-stroma-inflammation networks promote invasive properties and IL-8 expression in triple-negative breast cancer. Front Immunol. 2019;10:804. https://doi.org/10.3389/fimmu.2019.00804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Galbo PM Jr, Zang X, Zheng D. Molecular features of cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res. 2021;27(9):2636–47. https://doi.org/10.1158/1078-0432.Ccr-20-4226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, et al. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell. 2021;39(11):1531-1547.e1510. https://doi.org/10.1016/j.ccell.2021.09.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Liaoning S&T Project (2019-ZD-0592).

Author information

Authors and Affiliations

Authors

Contributions

All the authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Jie Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the Faculty of Science Ethics Committee at Liaoning Cancer Hospital and Institute (20191215). All participants provided expressed consent for publication of their details. All personal information have been made anonymous.

Informed consent

All patients included in the study signed informed consent forms before surgery at the Liaoning Province Cancer Hospital and Institute.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, XK., Xie, B., Shao, Y. et al. Cytokine-driven positive feedback loop organizes fibroblast transformation and facilitates gastric cancer progression. Clin Transl Oncol 24, 1354–1364 (2022). https://doi.org/10.1007/s12094-022-02777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02777-z

Keywords

Navigation