Skip to main content

Advertisement

Log in

The optimal immune checkpoint inhibitors combined with chemotherapy for advanced non-small-cell lung cancer: a systematic review and meta-analysis

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Immune checkpoint inhibitors (ICIs) plus chemotherapy (CT) have strikingly expanded the therapeutic landscape for advanced non-small cell lung cancer (NSCLC), but little is known about which is superior. We performed a meta-analysis that compared the efficacy and safety of PD-1 inhibitor + CT with PD-L1 inhibitor + CT.

Methods

PubMed, Embase, Web of Science, Cochrane Library, and major international scientific meetings were searched for relevant randomized controlled trials (RCTs), and the indirect analysis was performed for PD-1 + CT vs PD-L1 + CT. The outcomes included progression-free survival (PFS), overall survival (OS), objective response rate (ORR) and treatment-related adverse events (TRAEs).

Results

8 phase III RCTs with 4253 patients comparing PD-1/PD-L1 + CT in NSCLC were included. The PD-1 + CT led to notably longer OS most in low/negative expression of PD-L1 for NSCLC patients compared with PD-L1 + CT. In terms of Grade 3–5 TRAEs, the results showed that PD-1 + CT and PD-L1 + CT exclusively increased the risk of adverse incidence than CT alone, especially for PD-L1 + CT (p < 0.00001). For subgroups including female, young patients, patients with nonsmoker, and EGFR/ALK wild-type, PD-1 + CT was associated with prolonged OS (p < 0.05). Meanwhile, for no liver metastasis of NSCLC patients, we found obviously OS advantage for patients treated with PD-1 + CT compared to PD-L1 + CT.

Conclusions

ICIs + CT seemed to be more effective first-line regimen and PD-1 + CT could be recommended as the first-rank therapy for advanced NSCLC patients with low/negative expression of PD-L1. However, we should be particularly vigilant about the occurrence of the Grade 3–5 TRAEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD. Jemal A (2018) cancer statistics. Ca Cancer J Clin. 2018;68:7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  2. Fitzmaurice C, Akinyemiju TF, Al Lami FH, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4:1553–688. https://doi.org/10.1001/jamaoncol.2018.2706.

    Article  PubMed  Google Scholar 

  3. Chen Y, Peng X, Zhou Y, Xia K, Zhuang W. Comparing the benefits of chemoradiotherapy and chemotherapy for resectable stage III A/N2 non-small cell lung cancer: a meta-analysis. World J Surg Oncol. 2018;16:8. https://doi.org/10.1186/s12957-018-1313-x.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54. https://doi.org/10.1038/nature25183.

    Article  CAS  PubMed  Google Scholar 

  5. Reck M, Rabe KF. Precision diagnosis and treatment for advanced non–small-cell lung cancer. N Engl J Med. 2017;377:849–61. https://doi.org/10.1056/NEJMra1703413.

    Article  CAS  PubMed  Google Scholar 

  6. Laurie S, Solomon B, Seymour L, et al. Randomised, double-blind trial of carboplatin and paclitaxel with daily oral cediranib or placebo in patients with advanced non-small cell lung cancer: NCIC Clinical Trials Group study BR29. Eur J Cancer. 2014;50:706–12. https://doi.org/10.1016/j.ejca.2013.11.032.

    Article  CAS  PubMed  Google Scholar 

  7. Paz-Ares LG, Biesma B, Heigener D, et al. Phase III, randomized, double-blind, placebo-controlled trial of gemcitabine/cisplatin alone or with sorafenib for the first-line treatment of advanced, nonsquamous non–small-cell lung cancer. J Clin Oncol. 2012;30:3084–92. https://doi.org/10.1200/JCO.2011.39.7646.

    Article  CAS  PubMed  Google Scholar 

  8. Hall RD, Le TM, Haggstrom DE, Gentzler RD. Angiogenesis inhibition as a therapeutic strategy in non-small cell lung cancer (NSCLC). Transl Lung Cancer Res. 2015;4:515. https://doi.org/10.3978/j.issn.2218-6751.2015.06.09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garon EB, Ciuleanu T-E, Arrieta O, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014;384:665–73. https://doi.org/10.1016/S0140-6736(14)60845-X.

    Article  CAS  PubMed  Google Scholar 

  10. Reck M, Kaiser R, Mellemgaard A, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15:143–55. https://doi.org/10.1016/S1470-2045(13)70586-2.

    Article  CAS  PubMed  Google Scholar 

  11. Reck M, Popat S, Reinmuth N, De Ruysscher D, Kerr K, Peters S. Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25:iii27-iii39.

  12. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015;373:1627–39. https://doi.org/10.1056/NEJMoa1507643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med. 2015;373:123–35. https://doi.org/10.1056/NEJMoa1504627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378:2078–92. https://doi.org/10.1056/NEJMoa1801005.

    Article  CAS  PubMed  Google Scholar 

  15. Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N Engl J Med. 2017;377:1919–29. https://doi.org/10.1056/NEJMoa1709937.

    Article  CAS  PubMed  Google Scholar 

  16. Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170(1120–1133):e1117. https://doi.org/10.1016/j.cell.2017.07.024.

    Article  CAS  Google Scholar 

  17. Wang C, Qiao W, Jiang Y, et al. The landscape of immune checkpoint inhibitor plus chemotherapy versus immunotherapy for advanced non-small-cell lung cancer: a systematic review and meta-analysis. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.29371.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou Y, Lin Z, Zhang X, et al. First-line treatment for patients with advanced non-small cell lung carcinoma and high PD-L1 expression: pembrolizumab or pembrolizumab plus chemotherapy. J Immunother Cancer. 2019;7:120. https://doi.org/10.1186/s40425-019-0600-6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamousNSCLC. N Engl J Med. 2018;378:2288–301. https://doi.org/10.1056/NEJMoa1716948.

    Article  CAS  PubMed  Google Scholar 

  20. Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer. N Engl J Med. 2018;379:2040–51. https://doi.org/10.1056/NEJMoa1810865.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Zhou H, Zhang L. Which is the optimal immunotherapy for advanced squamous non-small-cell lung cancer in combination with chemotherapy: anti-PD-1 or anti-PD-L1? J Immunother Cancer. 2018;6:135. https://doi.org/10.1186/s40425-018-0427-6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paz-Ares LG, Luft A, Tafreshi A, et al. Phase 3 study of carboplatin-paclitaxel/nab-paclitaxel (Chemo) with or without pembrolizumab (Pembro) for patients (Pts) with metastatic squamous (Sq) non-small cell lung cancer (NSCLC): American Society of Clinical Oncology, 2018.

  23. Jotte RM, Cappuzzo F, Vynnychenko I, et al. IMpower131: Primary PFS and safety analysis of a randomized phase III study of atezolizumab+ carboplatin+ paclitaxel or nab-paclitaxel vs carboplatin+ nab-paclitaxel as 1L therapy in advanced squamous NSCLC. J Clin Oncol. 2018;36:LBA9000.

  24. Barlesi F, Vansteenkiste J, Spigel D, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): an open-label, randomised, phase 3 study. Lancet Oncol. 2018;19:1468–79. https://doi.org/10.1016/S1470-2045(18)30673-9.

    Article  CAS  PubMed  Google Scholar 

  25. Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17:1497–508. https://doi.org/10.1016/S1470-2045(16)30498-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. West H, McCleod M, Hussein M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20:924–37. https://doi.org/10.1016/S1470-2045(19)30167-6.

    Article  CAS  PubMed  Google Scholar 

  27. Papadimitrakopoulou V, Cobo M, Bordoni R, Dubray-Longeras P, Szalai Z, Ursol G. IMpower132: PFS and safety results with 1L atezolizumab+ carboplatin/cisplatin+ pemetrexed in stage IV non-squamous NSCLC. J Thorac Oncol. 2018;13:S332–333.

    Article  Google Scholar 

  28. Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. https://doi.org/10.1136/bmj.d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Zhou Y, Tang L, et al. Immune-checkpoint inhibitors as the first line treatment of advanced non-small cell lung cancer: a meta-analysis of randomized controlled trials. J Cancer. 2019;10:6261. https://doi.org/10.7150/jca.34677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Y, Chen C, Zhang X, et al. Immune-checkpoint inhibitor plus chemotherapy versus conventional chemotherapy for first-line treatment in advanced non-small cell lung carcinoma: a systematic review and meta-analysis. J Immunother Cancer. 2018;6:155. https://doi.org/10.1186/s40425-018-0477-9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5. https://doi.org/10.1126/science.aar4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zou W, Wolchok JD, Chen L. PD-L1 (B7–H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8:328. https://doi.org/10.1126/scitranslmed.aad7118.

    Article  CAS  Google Scholar 

  33. Herbst RS, Baas P, Kim D-W, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7.

    Article  CAS  PubMed  Google Scholar 

  34. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65. https://doi.org/10.1016/S0140-6736(16)32517-X.

    Article  PubMed  Google Scholar 

  35. Luo W, Wang Z, Tian P, Li W. Safety and tolerability of PD-1/PD-L1 inhibitors in the treatment of non-small cell lung cancer: a meta-analysis of randomized controlled trials. J Cancer Res Clin Oncol. 2018;144:1851–9. https://doi.org/10.1007/s00432-018-2707-4.

    Article  CAS  PubMed  Google Scholar 

  36. O'Kane GM, Labbé C, Doherty MK, Young K, Albaba H, Leighl NB. Monitoring and management of immune-related adverse events associated with programmed cell death protein-1 axis inhibitors in lung cancer. Oncologist. 2018;22:70. https://doi.org/10.1634/theoncologist.2016-0164.

    Article  CAS  Google Scholar 

  37. Ma K, Lu Y, Jiang S, Tang J, Li X, Zhang Y. The relative risk and incidence of immune checkpoint inhibitors related pneumonitis in patients with advanced cancer: a meta-analysis. Front Pharmacol. 2018;9:1430. https://doi.org/10.3389/fphar.2018.01430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Su Q, Zhang X, Shen X, Hou Y, Sun Z, Gao ZH. Risk of immune-related colitis with PD-1/PD-L1 inhibitors vs chemotherapy in solid tumors: systems assessment. J Cancer. 2018;9:1614. https://doi.org/10.7150/jca.24200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. El-Osta H, Jafri S. Predictors for clinical benefit of immune checkpoint inhibitors in advanced non-small-cell lung cancer: a meta-analysis. Immunotherapy. 2019;11:189–99. https://doi.org/10.2217/imt-2018-0086.

    Article  CAS  PubMed  Google Scholar 

  40. Conforti F, Pala L, Bagnardi V, et al. Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis. Lancet Oncol. 2018;19:737–46. https://doi.org/10.1016/S1470-2045(18)30261-4.

    Article  CAS  PubMed  Google Scholar 

  41. El-Osta HE, Mott FE, Burt BM, Wang DY, Sabichi AL. Predictors of benefits from frontline chemoimmunotherapy in stage IV non-small-cell lung cancer: a meta-analysis. OncoImmunology. 2019;8:e1665974. https://doi.org/10.1080/2162402X.2019.1665974.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ninomiya K, Oze I, Kato Y, et al. Influence of age on the efficacy of immune checkpoint inhibitors in advanced cancers: a systematic review and meta-analysis. Acta Oncol. 2019;1:1–8. https://doi.org/10.1080/0284186X.2019.1695062.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81372436), and Science and Technology Open Cooperation Project of Henan Province (182106000062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ge.

Ethics declarations

Conflict of interest

The authors have declared that no conflict interest exists.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12094_2020_2502_MOESM1_ESM.tif

Figure S1 Forest plots of hazard ratios comparing OS between patients treated with PD-1 + CT or PD-L1 + CT according to PD-L1 expression. PD-1: anti-PD-1 inhibitors combined with chemotherapy; PD-L1: anti-PD-L1 inhibitors combined with chemotherapy; *PD-L1 high (TC3 or IC3). Low PD-L1 expression: PDL1 1-49% or TC1/2 (TC ≥1% and <50%) or IC1/2 (IC ≥1% and <10%). High PD-L1 expression: PD-L1 ≥ 50% or TC3 (TC≥50%) or IC3 (IC≥10%). TC: tumor cells. IC: tumor-infiltrating immune cells. (TIF 23054 kb)

12094_2020_2502_MOESM2_ESM.tif

Figure S2 Forest plots of hazard ratios comparing PFS between patients treated with PD-1 + CT or PD-L1 + CT according to PD-L1 expression. PD-1: anti-PD-1 inhibitors combined with chemotherapy; PD-L1: anti-PD-L1 inhibitors combined with chemotherapy; *PD-L1 high (TC3 or IC3). Low PD-L1 expression: PDL1 1-49% or TC1/2 (TC ≥1% and <50%) or IC1/2 (IC ≥1% and <10%). High PD-L1 expression: PD-L1 ≥ 50% or TC3 (TC≥50%) or IC3 (IC≥10%). TC: tumor cells. IC: tumor-infiltrating immune cells (TIF 23852 kb)

Supplementary file 3 (DOCX 17 kb)

Supplementary file 4 (DOCX 13 kb)

Supplementary file 5 (DOCX 15 kb)

Supplementary file 6 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Luo, H., Zheng, X.L. et al. The optimal immune checkpoint inhibitors combined with chemotherapy for advanced non-small-cell lung cancer: a systematic review and meta-analysis. Clin Transl Oncol 23, 1117–1127 (2021). https://doi.org/10.1007/s12094-020-02502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02502-8

Keywords

Navigation