Skip to main content

Advertisement

Log in

Morphine: double-faced roles in the regulation of tumor development

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Morphine, a highly potent analgesic, is one of the most effective drugs for the treatment of severe pain associated with cancer. It directly acts on the central nervous system to relieve pain, but also cause secondary complications, such as addiction, respiratory depression and constipation due to its activities on peripheral tissues. Besides pain relief, morphine is of great importance on cancer management with its effect on tumor development being the subject of debate for many years with some contradictory findings. Morphine has shown both tumor growth-promoting and growth-inhibiting effects in many published research studies. And various signaling pathways have been suggested to be involved in these effects of morphine. Based on a thorough literature review, we summarized the double-faced effects of morphine in tumor development, including tumor cell growth and apoptosis, metastasis, angiogenesis, immunomodulation and inflammation. And we attempted to optimize morphine administration in cancer patients to attenuate its tumor growth-promoting effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schmitz R. Friedrich Wilhelm Serturner and the discovery of morphine. Pharm Hist. 1985;27(2):61–74.

    PubMed  CAS  Google Scholar 

  2. Pasternak GW. Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol. 1993;16(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  3. Sueoka N, Sueoka E, Okabe S, Fujiki H. Anti-cancer effects of morphine through inhibition of tumour necrosis factor-alpha release and mRNA expression. Carcinogenesis. 1996;17(11):2337–41.

    Article  PubMed  CAS  Google Scholar 

  4. Maneckjee R, Minna JD. Opioids induce while nicotine suppresses apoptosis in human lung cancer cells. Cell Growth Differ. 1994;5(10):1033–40.

    PubMed  CAS  Google Scholar 

  5. Pasi A, Qu BX, Steiner R, Senn HJ, Bar W, Messiha FS. Angiogenesis: modulation with opioids. Gen Pharmacol. 1991;22(6):1077–9.

    Article  PubMed  CAS  Google Scholar 

  6. Hatzoglou A, Bakogeorgou E, Papakonstanti E, Stournaras C, Emmanouel DS, Castanas E. Identification and characterization of opioid and somatostatin binding sites in the opossum kidney (OK) cell line and their effect on growth. J Cell Biochem. 1996;63(4):410–21.

    Article  PubMed  CAS  Google Scholar 

  7. Hatzoglou A, Ouafik L, Bakogeorgou E, Thermos K, Castanas E. Morphine cross-reacts with somatostatin receptor SSTR2 in the T47D human breast cancer cell line and decreases cell growth. Cancer Res. 1995;55(23):5632–6.

    PubMed  CAS  Google Scholar 

  8. Maneckjee R, Biswas R, Vonderhaar BK. Binding of opioids to human MCF-7 breast cancer cells and their effects on growth. Cancer Res. 1990;50(8):2234–8.

    PubMed  CAS  Google Scholar 

  9. Kampa M, Bakogeorgou E, Hatzoglou A, Damianaki A, Martin PM, Castanas E. Opioid alkaloids and casomorphin peptides decrease the proliferation of prostatic cancer cell lines (LNCaP, PC3 and DU145) through a partial interaction with opioid receptors. Eur J Pharmacol. 1997;335(2–3):255–65.

    Article  PubMed  CAS  Google Scholar 

  10. Tegeder I, Grosch S, Schmidtko A, Haussler A, Schmidt H, Niederberger E, et al. G protein-independent G1 cell cycle block and apoptosis with morphine in adenocarcinoma cells: involvement of p53 phosphorylation. Cancer Res. 2003;63(8):1846–52.

    PubMed  CAS  Google Scholar 

  11. Yeager MP, Colacchio TA. Effect of morphine on growth of metastatic colon cancer in vivo. Arch Surg (Chicago, Ill: 1960). 1991;126(4):454–6.

    Article  CAS  Google Scholar 

  12. Sasamura T, Nakamura S, Iida Y, Fujii H, Murata J, Saiki I, et al. Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation. Eur J Pharmacol. 2002;441(3):185–91.

    Article  PubMed  CAS  Google Scholar 

  13. Harimaya Y, Koizumi K, Andoh T, Nojima H, Kuraishi Y, Saiki I. Potential ability of morphine to inhibit the adhesion, invasion and metastasis of metastatic colon 26-L5 carcinoma cells. Cancer Lett. 2002;187(1–2):121–7.

    Article  PubMed  CAS  Google Scholar 

  14. Hatzoglou A, Bakogeorgou E, Castanas E. The antiproliferative effect of opioid receptor agonists on the T47D human breast cancer cell line, is partially mediated through opioid receptors. Eur J Pharmacol. 1996;296(2):199–207.

    Article  PubMed  CAS  Google Scholar 

  15. Mathew B, Lennon FE, Siegler J, Gerhold L, Mambetsariev N, Moreno-Vinasco L, et al. Abstract C78: The mu opioid receptor regulates Lewis lung carcinoma tumor growth and metastasis. Mol Cancer Ther. 2009;8(12 Supplement):C78.

    Article  Google Scholar 

  16. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6.

    Article  PubMed  CAS  Google Scholar 

  17. Zagon IS, McLaughlin PJ. Opioids and the apoptotic pathway in human cancer cells. Neuropeptides. 2003;37(2):79–88.

    Article  PubMed  CAS  Google Scholar 

  18. Lin X, Wang YJ, Li Q, Hou YY, Hong MH, Cao YL, et al. Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. FEBS J. 2009;276(7):2022–36.

    Article  PubMed  CAS  Google Scholar 

  19. Hatsukari I, Hitosugi N, Ohno R, Hashimoto K, Nakamura S, Satoh K, et al. Induction of apoptosis by morphine in human tumor cell lines in vitro. Anticancer Res. 2007;27(2):857–64.

    PubMed  CAS  Google Scholar 

  20. Fernández-Checa JC, Garcia-Ruiz C. Apoptosis and mitochondria. Berlin: Springer; 2005.

    Book  Google Scholar 

  21. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol. 1999;11(2):255–60.

    Article  PubMed  CAS  Google Scholar 

  22. Yin D, Woodruff M, Zhang Y, Whaley S, Miao J, Ferslew K, et al. Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J Neuroimmunol. 2006;174(1–2):101–7.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao M, Zhou G, Zhang Y, Chen T, Sun X, Stuart C, et al. beta-arrestin2 inhibits opioid-induced breast cancer cell death through Akt and caspase-8 pathways. Neoplasma. 2009;56(2):108–13.

    Article  PubMed  CAS  Google Scholar 

  24. Cadet P, Rasmussen M, Zhu W, Tonnesen E, Mantione KJ, Stefano GB. Endogenous morphinergic signaling and tumor growth. Front Biosci. 2004;9:3176–86.

    Article  PubMed  CAS  Google Scholar 

  25. Crawford KW, Coop A, Bowen WD. Sigma(2) receptors regulate changes in sphingolipid levels in breast tumor cells. Eur J Pharmacol. 2002;443(1–3):207–9.

    Article  PubMed  CAS  Google Scholar 

  26. Diao CT, Li L, Lau SY, Wong TM, Wong NS. kappa-opioid receptor potentiates apoptosis via a phospholipase C pathway in the CNE2 human epithelial tumor cell line. Biochem Biophys Acta. 2000;1499(1–2):49–62.

    Article  PubMed  CAS  Google Scholar 

  27. Cao LH, Li HT, Lin WQ, Tan HY, Xie L, Zhong ZJ, et al. Morphine, a potential antagonist of cisplatin cytotoxicity, inhibits cisplatin-induced apoptosis and suppression of tumor growth in nasopharyngeal carcinoma xenografts. Sci Rep. 2016;6:18706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Karaman H, Tufek A, Karaman E, Tokgoz O. Opioids inhibit angiogenesis in a chorioallantoic membrane model. Pain Physician. 2017;20(2s):Se11–21.

    PubMed  Google Scholar 

  29. Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis? Cell. 1996;87(7):1153–5.

    Article  PubMed  CAS  Google Scholar 

  30. Brekken RA, Thorpe PE. Vascular endothelial growth factor and vascular targeting of solid tumors. Anticancer Res. 2001;21(6b):4221–9.

    PubMed  CAS  Google Scholar 

  31. Balasubramanian S, Ramakrishnan S, Charboneau R, Wang J, Barke RA, Roy S. Morphine sulfate inhibits hypoxia-induced vascular endothelial growth factor expression in endothelial cells and cardiac myocytes. J Mol Cell Cardiol. 2001;33(12):2179–87.

    Article  PubMed  CAS  Google Scholar 

  32. Koodie L, Ramakrishnan S, Roy S. Morphine suppresses tumor angiogenesis through a HIF-1alpha/p38MAPK pathway. Am J Pathol. 2010;177(2):984–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Martin JL, Charboneau R, Barke RA, Roy S. Chronic morphine treatment inhibits LPS-induced angiogenesis: implications in wound healing. Cell Immunol. 2010;265(2):139–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Duffy MJ, Duggan C. The urokinase plasminogen activator system: a rich source of tumour markers for the individualised management of patients with cancer. Clin Biochem. 2004;37(7):541–8.

    Article  PubMed  CAS  Google Scholar 

  35. Mignatti P, Rifkin DB. Nonenzymatic interactions between proteinases and the cell surface: novel roles in normal and malignant cell physiology. Adv Cancer Res. 2000;78:103–57.

    Article  PubMed  CAS  Google Scholar 

  36. Jespersen C, Doller A, el Akool S, Bachmann M, Muller R, Gutwein P, et al. Molecular mechanisms of nitric oxide-dependent inhibition of TPA-induced matrix metalloproteinase-9 (MMP-9) in MCF-7 cells. J Cell Physiol. 2009;219(2):276–87.

    Article  PubMed  CAS  Google Scholar 

  37. Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor-host cell communication. Differentiation. 2002;70(9–10):561–73.

    Article  PubMed  CAS  Google Scholar 

  38. Gach K, Szemraj J, Wyrebska A, Janecka A. The influence of opioids on matrix metalloproteinase-2 and -9 secretion and mRNA levels in MCF-7 breast cancer cell line. Mol Biol Rep. 2011;38(2):1231–6.

    Article  PubMed  CAS  Google Scholar 

  39. Min TJ, Park SH, Ji YH, Lee YS, Kim TW, Kim JH, et al. Morphine attenuates endothelial cell adhesion molecules induced by the supernatant of LPS-stimulated colon cancer cells. J Korean Med Sci. 2011;26(6):747–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Boettger MK, Weber K, Gajda M, Brauer R, Schaible HG. Spinally applied ketamine or morphine attenuate peripheral inflammation and hyperalgesia in acute and chronic phases of experimental arthritis. Brain Behav Immun. 2010;24(3):474–85.

    Article  PubMed  CAS  Google Scholar 

  42. Hua S, Cabot PJ. Mechanisms of peripheral immune-cell-mediated analgesia in inflammation: clinical and therapeutic implications. Trends Pharmacol Sci. 2010;31(9):427–33.

    Article  PubMed  CAS  Google Scholar 

  43. Cabot PJ, Carter L, Gaiddon C, Zhang Q, Schafer M, Loeffler JP, et al. Immune cell-derived beta-endorphin. Production, release, and control of inflammatory pain in rats. J Clin Investig. 1997;100(1):142–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Finley MJ, Happel CM, Kaminsky DE, Rogers TJ. Opioid and nociceptin receptors regulate cytokine and cytokine receptor expression. Cell Immunol. 2008;252(1–2):146–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Buga GM, Wei LH, Bauer PM, Fukuto JM, Ignarro LJ. NG-hydroxy-l-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am J Physiol. 1998;275(4 Pt 2):R1256–64.

    PubMed  CAS  Google Scholar 

  46. Mottaz H, Schonenberger R, Fischer S, Eggen RI, Schirmer K, Groh KJ. Dose-dependent effects of morphine on lipopolysaccharide (LPS)-induced inflammation, and involvement of multixenobiotic resistance (MXR) transporters in LPS efflux in teleost fish. Environ Pollut (Barking, Essex: 1987). 2017;221:105–15.

    Article  CAS  Google Scholar 

  47. Sergeeva MG, Grishina ZV, Varfolomeyev SD. Morphine effect on proliferation of normal and tumor cells of immune origin. Immunol Lett. 1993;36(2):215–8.

    Article  PubMed  CAS  Google Scholar 

  48. Gupta K, Kshirsagar S, Chang L, Schwartz R, Law PY, Yee D, et al. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 2002;62(15):4491–8.

    PubMed  CAS  Google Scholar 

  49. Lazarczyk M, Matyja E, Lipkowski AW. A comparative study of morphine stimulation and biphalin inhibition of human glioblastoma T98G cell proliferation in vitro. Peptides. 2010;31(8):1606–12.

    Article  PubMed  CAS  Google Scholar 

  50. Zong J, Pollack GM. Morphine antinociception is enhanced in mdr1a gene-deficient mice. Pharm Res. 2000;17(6):749–53.

    Article  PubMed  CAS  Google Scholar 

  51. Trapaidze N, Gomes I, Cvejic S, Bansinath M, Devi LA. Opioid receptor endocytosis and activation of MAP kinase pathway. Brain Res Mol Brain Res. 2000;76(2):220–8.

    Article  PubMed  CAS  Google Scholar 

  52. Lin X, Li Q, Wang YJ, Ju YW, Chi ZQ, Wang MW, et al. Morphine inhibits doxorubicin-induced reactive oxygen species generation and nuclear factor kappaB transcriptional activation in neuroblastoma SH-SY5Y cells. Biochem J. 2007;406(2):215–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Iglesias M, Segura MF, Comella JX, Olmos G. Mu-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase. Neuropharmacology. 2003;44(4):482–92.

    Article  PubMed  CAS  Google Scholar 

  54. Ma Y, Ren Z, Ma S, Yan W, He M, Wang D, et al. Morphine enhances renal cell carcinoma aggressiveness through promotes survivin level. Ren Fail. 2017;39(1):258–64.

    Article  PubMed  CAS  Google Scholar 

  55. Farooqui M, Li Y, Rogers T, Poonawala T, Griffin RJ, Song CW, et al. COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia. Br J Cancer. 2007;97(11):1523–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Singleton PA, Moss J. Effect of perioperative opioids on cancer recurrence: a hypothesis. Future Oncol (London, England). 2010;6(8):1237–42.

    Article  CAS  Google Scholar 

  57. Radisavljevic Z, Avraham H, Avraham S. Vascular endothelial growth factor up-regulates ICAM-1 expression via the phosphatidylinositol 3 OH-kinase/AKT/Nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J Biol Chem. 2000;275(27):20770–4.

    Article  PubMed  CAS  Google Scholar 

  58. Kevil CG, Orr AW, Langston W, Mickett K, Murphy-Ullrich J, Patel RP, et al. Intercellular adhesion molecule-1 (ICAM-1) regulates endothelial cell motility through a nitric oxide-dependent pathway. J Biol Chem. 2004;279(18):19230–8.

    Article  PubMed  CAS  Google Scholar 

  59. Wu Y, Ip JE, Huang J, Zhang L, Matsushita K, Liew CC, et al. Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res. 2006;99(3):315–22.

    Article  PubMed  CAS  Google Scholar 

  60. Nair MPN, Mahajan SD, Reynolds JL. Opiates upregulate adhesion molecule expression in brain microvascular endothelial cells (BMVEC): implications for altered blood brain barrier (BBB) permeability. Am J Infect Dis. 2006;2(2):58–66.

    Article  CAS  Google Scholar 

  61. Leo S, Nuydens R, Meert TF. Opioid-induced proliferation of vascular endothelial cells. J Pain Res. 2009;2:59–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Shapiro RL, Duquette JG, Roses DF, Nunes I, Harris MN, Kamino H, et al. Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (uPA)-deficient and wild-type mice: cellular blue nevi invade but do not progress to malignant melanoma in uPA-deficient animals. Cancer Res. 1996;56(15):3597–604.

    PubMed  CAS  Google Scholar 

  63. Nylund G, Pettersson A, Bengtsson C, Khorram-Manesh A, Nordgren S, Delbro DS. Functional expression of mu-opioid receptors in the human colon cancer cell line, HT-29, and their localization in human colon. Dig Dis Sci. 2008;53(2):461–6.

    Article  PubMed  CAS  Google Scholar 

  64. Gach K, Szemraj J, Fichna J, Piestrzeniewicz M, Delbro DS, Janecka A. The influence of opioids on urokinase plasminogen activator on protein and mRNA level in MCF-7 breast cancer cell line. Chem Biol Drug Des. 2009;74(4):390–6.

    Article  PubMed  CAS  Google Scholar 

  65. Liu S, Qi L, Yu Q, Song Y, Han W, Zu X, et al. Survivin and HLA-I expression predicts survival of patients with clear cell renal cell carcinoma. Tumour Biol. 2014;35(8):8281–8.

    Article  PubMed  CAS  Google Scholar 

  66. Chen X, Chen XG, Hu X, Song T, Ou X, Zhang C, et al. MiR-34a and miR-203 inhibit survivin expression to control cell proliferation and survival in human osteosarcoma cells. J Cancer. 2016;7(9):1057–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 2011;7(5):651–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107–11.

    Article  PubMed  CAS  Google Scholar 

  69. Borner C, Stumm R, Hollt V, Kraus J. Comparative analysis of mu-opioid receptor expression in immune and neuronal cells. J Neuroimmunol. 2007;188(1–2):56–63.

    Article  PubMed  CAS  Google Scholar 

  70. Vallejo R, de Leon-Casasola O, Benyamin R. Opioid therapy and immunosuppression: a review. Am J Ther. 2004;11(5):354–65.

    Article  PubMed  Google Scholar 

  71. Wei G, Moss J, Yuan CS. Opioid-induced immunosuppression: is it centrally mediated or peripherally mediated? Biochem Pharmacol. 2003;65(11):1761–6.

    Article  PubMed  CAS  Google Scholar 

  72. McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ. Opioids, opioid receptors, and the immune response. Drug Alcohol Depend. 2001;62(2):111–23.

    Article  PubMed  CAS  Google Scholar 

  73. Du JY, Liang Y, Fang JF, Jiang YL, Shao XM, He XF, et al. Effect of systemic injection of heterogenous and homogenous opioids on peripheral cellular immune response in rats with bone cancer pain: a comparative study. Exp Ther Med. 2016;12(4):2568–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Professor Chu and Professor Liang for the instructions to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HC. Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liang, Y., Yan, Y. et al. Morphine: double-faced roles in the regulation of tumor development. Clin Transl Oncol 20, 808–814 (2018). https://doi.org/10.1007/s12094-017-1796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1796-x

Keywords

Navigation