Skip to main content

Advertisement

Log in

Emergence of CTNNB1 mutation at acquired resistance to KIT inhibitor in metastatic melanoma

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The KIT inhibitor, imatinib, has shown promising efficacy in patients with KIT-mutated melanoma; however, acquisition of resistance to imatinib occurs rapidly in the majority of patients. The mechanisms of acquired resistance to imatinib in melanoma remain unclear.

Methods

We analyzed biopsy samples from paired baseline and post-treatment tumor lesions in one patient with KIT-mutated melanoma who had had an initial objective tumor regression in response to imatinib treatment followed by disease progression 8 months later.

Results

Targeted deep sequencing from post-treatment biopsy samples detected an additional mutation in CTNNB1 (S33C) with original KIT L576P mutation. We examined the functional role of the additional CTNNB1 S33C mutation in resistance to imatinib indirectly using the Ba/F3 cell model. Ba/F3 cell lines transfected with both the L576P KIT mutation and the CTNNB1 S33C mutation demonstrated no growth inhibition despite imatinib treatment, whereas growth inhibition was observed in the Ba/F3 cell line transfected with the L576 KIT mutation alone.

Conclusions

We report the first identification of the emergence of a CTNNB1 mutation that can confer acquired resistance to imatinib. Further investigation into the causes of acquired resistance to imatinib will be essential to improve the prognosis for patients with KIT-mutated melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wehrle-Haller B. The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res Spons Eur Soc Pigment Cell Res Int Pigment Cell Soc. 2003;16(3):287–96.

    Article  CAS  Google Scholar 

  2. Duensing A, Medeiros F, McConarty B, Joseph NE, Panigrahy D, Singer S, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004;23(22):3999–4006. doi:10.1038/sj.onc.1207525.

    Article  CAS  PubMed  Google Scholar 

  3. Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007;26(54):7560–8. doi:10.1038/sj.onc.1210558.

    Article  CAS  PubMed  Google Scholar 

  4. Lux ML, Rubin BP, Biase TL, Chen CJ, Maclure T, Demetri G, et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol. 2000;156(3):791–5. doi:10.1016/s0002-9440(10)64946-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rubin BP, Singer S, Tsao C, Duensing A, Lux ML, Ruiz R, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Can Res. 2001;61(22):8118–21.

    CAS  Google Scholar 

  6. Blanke CD, Demetri GD, von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(4):620–5. doi:10.1200/jco.2007.13.4403.

    Article  CAS  Google Scholar 

  7. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(21):6821–8. doi:10.1158/1078-0432.ccr-08-0575.

    Article  CAS  Google Scholar 

  8. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(26):4340–6. doi:10.1200/jco.2006.06.2984.

    Article  CAS  Google Scholar 

  9. Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA, Teitcher J, et al. KIT as a therapeutic target in metastatic melanoma. JAMA J Am Med Assoc. 2011;305(22):2327–34. doi:10.1001/jama.2011.746.

    Article  CAS  Google Scholar 

  10. Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(21):2904–9. doi:10.1200/jco.2010.33.9275.

    Article  CAS  Google Scholar 

  11. Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(26):3182–90. doi:10.1200/jco.2012.47.7836.

    Article  CAS  Google Scholar 

  12. Liegl B, Kepten I, Le C, Zhu M, Demetri GD, Heinrich MC, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216(1):64–74. doi:10.1002/path.2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Todd JR, Scurr LL, Becker TM, Kefford RF, Rizos H. The MAPK pathway functions as a redundant survival signal that reinforces the PI3K cascade in c-Kit mutant melanoma. Oncogene. 2014;33(2):236–45. doi:10.1038/onc.2012.562.

    Article  CAS  PubMed  Google Scholar 

  14. Minor DR, Kashani-Sabet M, Garrido M, O’Day SJ, Hamid O, Bastian BC. Sunitinib therapy for melanoma patients with KIT mutations. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(5):1457–63. doi:10.1158/1078-0432.ccr-11-1987.

    Article  CAS  Google Scholar 

  15. Todd JR, Becker TM, Kefford RF, Rizos H. Secondary c-Kit mutations confer acquired resistance to RTK inhibitors in c-Kit mutant melanoma cells. Pigment Cell Melanoma Res. 2013;26(4):518–26. doi:10.1111/pcmr.12107.

    Article  CAS  PubMed  Google Scholar 

  16. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer (Oxford, England: 1990). 2009;45(2):228–47. doi:10.1016/j.ejca.2008.10.026.

    Article  CAS  Google Scholar 

  17. Warmuth M, Kim S, Gu XJ, Xia G, Adrian F. Ba/F3 cells and their use in kinase drug discovery. Curr Opin Oncol. 2007;19(1):55–60. doi:10.1097/CCO.0b013e328011a25f.

    Article  CAS  PubMed  Google Scholar 

  18. Chien AJ, Moon RT. WNTS and WNT receptors as therapeutic tools and targets in human disease processes. Front Biosci J Virtual Libr. 2007;12:448–57.

    Article  CAS  Google Scholar 

  19. Novellasdemunt L, Antas P, Li VS. Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol. 2015;309(8):C511–21. doi:10.1152/ajpcell.00117.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue G, Romano E, Massi D, Mandala M. Wnt/beta-catenin signaling in melanoma: preclinical rationale and novel therapeutic insights. Cancer Treat Rev. 2016;49:1–12. doi:10.1016/j.ctrv.2016.06.009.

    Article  CAS  PubMed  Google Scholar 

  21. Uitdehaag JC, de Roos JA, van Doornmalen AM, Prinsen MB, Spijkers-Hagelstein JA, de Vetter JR, et al. Selective targeting of CTNBB1-, KRAS- or MYC-driven cell growth by combinations of existing drugs. PLoS One. 2015;10(5):e0125021. doi:10.1371/journal.pone.0125021.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baldus SE, Monig SP, Huxel S, Landsberg S, Hanisch FG, Engelmann K, et al. MUC1 and nuclear beta-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(8):2790–6.

    Article  CAS  Google Scholar 

  23. Larue L, Kumasaka M, Goding CR. Beta-catenin in the melanocyte lineage. Pigment Cell Res Spons Eur Soc Pigment Cell Res Int Pigment Cell Soc. 2003;16(3):312–7.

    Article  CAS  Google Scholar 

  24. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13(1):11–26. doi:10.1038/nrc3419.

    Article  CAS  PubMed  Google Scholar 

  25. Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, et al. Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci USA. 2009;106(4):1193–8. doi:10.1073/pnas.0811902106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, Kumasaka M, et al. Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 2007;21(22):2923–35. doi:10.1101/gad.450107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pacheco-Pinedo EC, Durham AC, Stewart KM, Goss AM, Lu MM, Demayo FJ, et al. Wnt/beta-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J Clin Investig. 2011;121(5):1935–45. doi:10.1172/jci44871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bulut G, Fallen S, Beauchamp EM, Drebing LE, Sun J, Berry DL, et al. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice. PLoS One. 2011;6(11):e27243. doi:10.1371/journal.pone.0027243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu J, Ding X, Tang J, Cao Y, Hu P, Zhou F, et al. Enhancement of canonical Wnt/beta-catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells. PLoS One. 2011;6(11):e27496. doi:10.1371/journal.pone.0027496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI14C3418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the local ethics committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent statement

For our retrospective study, formal consent is not required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, J., Kim, S.Y., Kim, Y.J. et al. Emergence of CTNNB1 mutation at acquired resistance to KIT inhibitor in metastatic melanoma. Clin Transl Oncol 19, 1247–1252 (2017). https://doi.org/10.1007/s12094-017-1662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1662-x

Keywords

Navigation