Skip to main content

Advertisement

Log in

Molecular biology of renal cell carcinoma

  • Educational Series
  • Blue Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Recent developments in molecular biology have lead to an increased understanding of the events involved in renal cell carcinoma (RCC) carcinogenesis. In this field, basic molecular pathways important to oncogenic transformation secondary to Von Hippel-Lindau (VHL) tumor suppression gene inactivation, associated to clear-cell RCC, have been elucidated. Loss of function of VHL results in the high-expression of pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). New therapies against specific targets in RCC have demonstrated significant clinical activity in patients. These therapeutic approaches are based on the VEGF inhibition by using anti-VEGF monoclonal antibodies (bevacizumab) or multi-kinase inhibitors, that also target PDGF and c-kit tyrosine kinases (sorafenib, sunitinib); or by the inhibition of the mammalian target of rapamycin (mTOR) pathway (temsirolimus). This article reviews current knowledge of molecular pathogenesis of inherited and sporadic RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kopper L, Timar J. Genomics of renal cell cancer-does it provide breakthrough? Pathol Oncol Res. 2006:12(1):5–11.

    Article  PubMed  CAS  Google Scholar 

  2. Larkin JM, Eisen T. Kinase inhibitors in the treatment of renal cell carcinoma. Crit Rev Oncol Hematol. 2006;21:9.

    Google Scholar 

  3. Eto M, Naito S. Molecular targeting therapy for renal cell carcinoma. Int J Clin Oncol. 2006;11(3):209–13.

    Article  PubMed  CAS  Google Scholar 

  4. Carroll VA, Ashcroft M. Role of hypoxia-inducible factor (HIF)-lalpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-1, or loss of von Hippel-Lindau function: implications for targeling the HIF pathway. Cancer Res. 2006; 15;66(12):6264–70.

    Article  Google Scholar 

  5. Rathmell WK, Wright TM, Rini BI. Molecularly targeted therapy in renal cell carcinoma. Expert Rev Anticancer Ther. 2005;5(6):1051–40.

    Article  Google Scholar 

  6. Raval RR, Lau KW, Tran MG, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25(15):5675–8.

    Article  PubMed  CAS  Google Scholar 

  7. Rathmell WK, Hickey MM, Bezman NA, et al.In vitro andin vivo models analyzing von Hippel-Lindau disease-specific mutations. Cancer Res. 2004;64(23):8595–603.

    Article  PubMed  CAS  Google Scholar 

  8. Zimmer M, Doucette D, Siddiqui N, Iliopoulos O. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/-tumors. Mol Cancer Res. 2004;2 (2):89–95.

    PubMed  CAS  Google Scholar 

  9. Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA. Pathobiology, rognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res. 2003;9(13):4641–52.

    PubMed  CAS  Google Scholar 

  10. Gunaratnam L, Morley M, Franovic A, et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem. 2003;278(45): 44966–74.

    Article  PubMed  CAS  Google Scholar 

  11. Kurban G, Hudon V, Duplan E, Ohh M, Pause A. Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. Cancer Res. 2006;66(3):1313–9.

    Article  PubMed  CAS  Google Scholar 

  12. Gollob JA, Wilhelm S, Carter C, Kelley SL. Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol. 2006;33(4):592–406.

    Article  CAS  Google Scholar 

  13. Reddy GK, Mughal TI, Rini BI. Current Data with Mammalian Target of Rapamycin Inhibitors in Advanced-Stage Renal Cell Carcinoma. Clin Genitourin Cancer. 2006;5(2):110–3.

    PubMed  CAS  Google Scholar 

  14. Lin F, Zhang PL, Yang XJ, Prichard JW, Lun M, Brown RE. Morphoproteomic and molecular concomitants of an overexpresed and activated mTOR pathway in renal cell carcinomas. Ann Clin Lab Sci. 2006;36(3):283–93.

    PubMed  CAS  Google Scholar 

  15. Morgensztern D, McLeod HL. P13K/Akt/ mTOR pathway as a target for cancer therapy. Anticancer Drugs. 2005;16(8):797–803.

    Article  PubMed  CAS  Google Scholar 

  16. Ljungberg BJ, Jacobsen J, Rudolfsson SH, Lindh G, Grankvist K, Rasmuson T Different vascular endothelial growth factor (VEGF), VEGF-receptor 1 and-2 mRNA expression profiles between clear cell and papillary renal cell carcinoma. BJU Int. 2006;98(3):661–7.

    Article  PubMed  CAS  Google Scholar 

  17. Schips L, Dalpiaz O, Lipsky K, Langner C, Rehak P, Puerstner P, Pummer K, Zigeuner R. Serum Levels of Vascular Endothelial Growth Factor (VEGF) and Endostatin in Renal Cell Carcinoma Patients Compared to a Control Group. Eur Urol. 2006, 5.

  18. Rini BI, Jaeger E, Weinberg V, Sein N, Chew K, Fong K, Simko J, Small EJ, Waldman FM. Clinical response to therapy targeted at vascular endothelial growth factor in metastatic renal cell carcinoma: impact of patient characteristics and Von Hippel-Lindau gene status. BJU Int. 2006; 98(4):756–62.

    Article  PubMed  CAS  Google Scholar 

  19. Jacobsen J, Grankvist K, Rasmuson T, Ljungberg B, Different isoform patterns for vascular endothelial growth factor between clear cell and papillary renal cell carcinoma. BJU Int. 2006;97(5):1102–8.

    Article  PubMed  CAS  Google Scholar 

  20. Rini BI, Small EJ. Biology and clinical development of vascular endothelial growth factor-targeted therapy in renal cell carcinoma. J Clin Oncol. 2005;25(5):1028–43. Epub 2004; 8. Review.

    Google Scholar 

  21. Datta K, Mondal S, Sinha S, Li J, Wang E, Knebelmann B, Karumanchi SA, Mukhopadhyay D. Role of elongin-binding domain of von Hippel Lindau gene product on HuR-mediated VPF/VEGF mRNA stability in renal cell carcinoma. Oncogene. 2005,24(55):7850–8.

    Article  PubMed  CAS  Google Scholar 

  22. Mukhopadhyay D, Datta K. Multiple regulatory pathways of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in tumors. Semin Cancer Biol. 2004;14(2):123–30.

    Article  PubMed  CAS  Google Scholar 

  23. Jacobsen J, Grankvist K, Rasmuson T, Bergh A, Landberg G, Ljungberg B. Expression of vascular endothelial growth factor protein in human renal cell carcinoma. BJU Int. 2004;93(3):297–302.

    Article  PubMed  CAS  Google Scholar 

  24. Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA. Pathobiology, rognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res. 2003;15;9(13):4641–52.

    Google Scholar 

  25. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349(5):427–34.

    Article  PubMed  CAS  Google Scholar 

  26. Ratain MJ, Eisen T, Stadler WM, Flaherty KT, Kaye SB, Rosner GL, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24(16):2505–12.

    Article  PubMed  CAS  Google Scholar 

  27. Motzer RJ, Michaelson MD, Redman BG, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24(1):16–24.

    Article  PubMed  CAS  Google Scholar 

  28. Motzer RJ, Rini BI, Bukowski RM, et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA. 2006;295(21):2516–24.

    Article  PubMed  CAS  Google Scholar 

  29. Pietras K, Sjöblom T, Rubin J, Jeldin CH, Ostman A. PDGF receptors as cancer drug targets. Cancer Cell. 2003;3:439–43.

    Article  PubMed  CAS  Google Scholar 

  30. Sulzbacher I, Birner P, Traxler M, Marberger M, Haitel A. Expression of plateletderived growth factor-alpha alpha receptor is associated with tumor progression in clear cell renal cell carcinoma. Am J Clin Pathol. 2003;120(1):107–12.

    Article  PubMed  CAS  Google Scholar 

  31. Xu L, Tong R, Cochran DM, Jain RK, Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotopic mouse model. Cancer Res. 2005;65(13): 5711–9.

    Article  PubMed  CAS  Google Scholar 

  32. Jermann M, Stahel RA, Salzberg M, et al. A phase II, open-label study of gefitinib (IRESSA) in patients with locally advanced, metastatic, or relapsed renal-cell carcinoma. Cancer Chemother Pharmacol. 2006;57(4):533–9.

    Article  PubMed  CAS  Google Scholar 

  33. hainsworth JD, Sosman JA, Spigel DR, Edwards DL, Baughman C, Greco A. Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol. 2005;25 (31):7889–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begoña Mellado.

Additional information

Supported by an unrestricted educational grant by Bristol-Myers Squibb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellado, B., Gascón, P. Molecular biology of renal cell carcinoma. Clin Transl Oncol 8, 706–710 (2006). https://doi.org/10.1007/s12094-006-0116-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0116-7

Key words

Navigation