Skip to main content
Log in

Catalase from the Antarctic Fungus Aspergillus fumigatus I-9–Biosynthesis and Gene Characterization

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Extremely cold habitats are a serious challenge for the existing there organisms. Inhabitants of these conditions are mostly microorganisms and lower mycetae. The mechanisms of microbial adaptation to extreme conditions are still unclear. Low temperatures cause significant physiological and biochemical changes in cells. Recently, there has been increasing interest in the relationship between low-temperature exposure and oxidative stress events, as well as the importance of antioxidant enzymes for survival in such conditions. The catalase is involved in the first line of the cells' antioxidant defense. Published information supports the concept of a key role for catalase in antioxidant defense against cold stress in a wide range of organisms isolated from the Antarctic. Data on representatives of microscopic fungi, however, are rarely found. There is scarce information on the characterization of catalase synthesized by adapted to cold stress organisms. Overall, this study aimed to observe the role of catalase in the survival strategy of filamentous fungi in extremely cold habitats and to identify the gene encoded catalase enzyme. Our results clearly showed that catalase is the main part of antioxidant enzyme defense in fungal cells against oxidative stress caused by low temperature exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh RS, Singh T, Pandey A (2019) Microbial enzymes—an overview. Adv Enzym Technol 72:1–40. https://doi.org/10.1016/B978-0-444-64114-4.00001-72

    Article  Google Scholar 

  2. Kango N, Jana UK, Choukade R (2019) Fungal enzymes: sources and biotechnological applications. In: Satyanarayana T, Deshmukh S, Deshpande M (eds) Advancing frontiers in mycology and mycotechnology. Springer, Singapore, pp 515–540. https://doi.org/10.1007/978-981-13-9349-5_21

    Chapter  Google Scholar 

  3. Berbee ML, James TY, Strullu-Derrien C (2017) Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu Rev Microbiol 71:41–60. https://doi.org/10.1146/annurev-micro-030117-020324

    Article  CAS  PubMed  Google Scholar 

  4. El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, El-Fakharany EMA (2022) Comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges. J Fungi 8:23. https://doi.org/10.3390/jof8010023

    Article  CAS  Google Scholar 

  5. Yan Y, Huang X, Zhou Y, Li J, Liu F, Li X, Zhou S (2023) Cytosol peroxiredoxin and cell surface catalase differentially respond to H2O2 Stress in Aspergillus nidulans. Antioxidants 12(7):1333. https://doi.org/10.3390/antiox12071333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Collins T, Margesin R (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl microbiol biotechnol 103:2857–2871. https://doi.org/10.1007/s00253-019-09659-5

    Article  CAS  PubMed  Google Scholar 

  7. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Sci Cairo 55:1–28. https://doi.org/10.1155/2013/512840

    Article  Google Scholar 

  8. Gocheva YG, Tosi S, Krumova ET et al (2009) Temperature downshift induces antioxidant response in fungi isolated from Antarctica. Extremophiles 13:273–281. https://doi.org/10.1007/s00792-008-0215-1

    Article  PubMed  Google Scholar 

  9. Margesin R, Feller G, Gerday C et al (2002) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Bitton, editor. The encyclopedia of environmental microbiology. Wiley, New York, pp 871–885. https://hdl.handle.net/2268/18203

  10. Cavicchioli R, Charlton T, Ertan H et al (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460. https://doi.org/10.1111/j.1751-7915.2011.00258.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krishnan A, Alias AS, Wong CMVL et al (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542. https://doi.org/10.1007/s00300-011-1012-3

    Article  Google Scholar 

  12. Kawasaki L, Aguirre J (2001) Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 183:1434–1440. https://doi.org/10.1128/jb.183.4.1434-1440.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nava-Ramírez T, Gutiérrez-Terrazas S, Hansberg W (2023) The Molecular chaperone mechanism of the C-terminal domain of large-size subunit catalases. Antioxid Basel 12(4):839. https://doi.org/10.3390/antiox12040839

    Article  CAS  Google Scholar 

  14. Karakus YY (2020) Typical catalases: function and structure. IntechOpen, London, pp 1–16. https://doi.org/10.5772/intechopen.90048

    Book  Google Scholar 

  15. Cook JN, Worsley JL (1996) Compositions and Method for Destroying Hydrogen Peroxide on Contact Lens. US Patent No. 5,521,091. https://patents.google.com/patent/US5521091A/en

  16. Kaushal J, Mehandia S, Singh G, Raina A, Arya SK (2018) Catalase enzyme: application in bioremediation and food industry. Biocatal Agric Biotechnol 16:192–199. https://doi.org/10.1016/j.bcab.2018.07.035

    Article  Google Scholar 

  17. Putnam CD, Arvai AS, Bourne Y, Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 296:295–309. https://doi.org/10.1006/jmbi.1999.3458

    Article  CAS  PubMed  Google Scholar 

  18. Fiedurek J, Gromada A (2000) Production of catalase and glucose oxidase by Aspergillus niger using unconventional oxygenation of culture. J Appl Microbiol 89:85–89. https://doi.org/10.1046/j.1365-2672.2000.01085.x

    Article  CAS  PubMed  Google Scholar 

  19. Krumova E, Abrashev R, Dishliyska V, Stoyancheva G, Kostadinova N, Miteva-Staleva J et al (2021) Cold-active catalase from the psychrotolerant fungus Penicillium griseofulvum. J Basic Microbiol 61:782–794. https://doi.org/10.1002/jobm.202100209

    Article  CAS  PubMed  Google Scholar 

  20. Stoyancheva G, Dishliyska V, Miteva-Staleva J, Kostadinova N, Abrashev R, Angelova M, Krumova E (2022) Sequencing and gene expression analysis of catalase genes in Antarctic fungal strain Penicillium griseofulvum P29. Polar Biology 63:1–11. https://doi.org/10.1007/s00300-021-03001-4

    Article  Google Scholar 

  21. Angelova M, Genova L, Pashova S, Slokoska L, Dolashka P (1996) Effect of cultural conditions on the synthesis of superoxide dismutase by Humicola lutea 110. J Ferment Bioeng 82:464–468. https://doi.org/10.1016/S0922-338X(97)86984-X

    Article  CAS  Google Scholar 

  22. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol chem 195:133–140. https://doi.org/10.1016/S0021-9258(19)50881-X

    Article  CAS  PubMed  Google Scholar 

  23. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to polyacrylamide gels. Anal Biochem 44:276–287. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  24. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268. https://doi.org/10.1093/nar/gkz991

    Article  CAS  PubMed  Google Scholar 

  25. Gromada A, Fiedurek J (1997) Selective isolation of Aspergillus niger mutants with enhanced glucose oxidase production. J Appl Microbiol 82:648–652. https://doi.org/10.1111/j.1365-2672.1997.tb03597.x

    Article  CAS  PubMed  Google Scholar 

  26. Fiedurek J, Gromada A (1997) Screening and mutagenesis of molds for improvement of the simultaneous production of catalase and glucose oxidase. Enzyme Microb Technol 20:344–347. https://doi.org/10.1016/S0141-0229(96)00148-2

    Article  CAS  Google Scholar 

  27. Isobe K, Inoue N, Takamatsu Y, Kamada K, Wakao N (2006) Production of catalase by fungi growing at low pH and high temperature. J Biosci Bioeng 101:73–76. https://doi.org/10.1263/jbb.101.73

    Article  CAS  PubMed  Google Scholar 

  28. Fiedurek J, Gromada A, Słomka A, Korniłowicz-Kowalska T, Kurek E, Melke J (2003) Catalase activity in arctic microfungi grown at different temperatures. Acta Biolog Hung 54:105–112. https://doi.org/10.1556/abiol.54.2003.1.11

    Article  CAS  Google Scholar 

  29. Kacem-Chaouche N, Maraihi Z, Destain J, Thonart P (2005) Study of catalase production by an Aspergillus phoenicis mutant strain in date flour extract submerged cultures. Biotechnol Agron Soc Environ 9:173–178

    CAS  Google Scholar 

  30. Paris S, Wysong D, Debeaupuis JP, Shibuya K, Philippe B, Diamond RD, Latgé JP (2003) Catalases of Aspergillus fumigatus. Infect Immun 71:3551–3562. https://doi.org/10.1128/iai.71.6.3551-3562.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nierman WC, Pain A, Anderson MJ et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156. https://doi.org/10.1038/nature04332

    Article  CAS  PubMed  Google Scholar 

  32. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at boundaries of life. Adv Space Res 40:1657–1664. https://doi.org/10.1016/j.asr.2007.06.004

    Article  Google Scholar 

  34. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208. https://doi.org/10.1038/nrmicro773

    Article  CAS  PubMed  Google Scholar 

  35. Collins T et al (2008) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 211–227. https://doi.org/10.1007/978-3-540-74335-4_13

    Chapter  Google Scholar 

  36. Gatti-Lafranconi P, Natalello A, Rehm S, Doglia SM, Pleiss J, Lotti M (2010) Evolution of stability in a cold-active enzyme elicits specificity relaxation and highlights substrate-related effects on temperature adaptation. J Mol Biol 395:155–166. https://doi.org/10.1016/j.jmb.2009.10.026

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Zhang N, Ma J, Zhou Y, Wei Q et al (2023) Advances in cold-adapted enzymes derived from microorganisms. Front in Microbiol 14:1152847. https://doi.org/10.3389/fmicb.2023.1152847

    Article  Google Scholar 

  38. Russell NJ (2008) Membrane components and cold sensing. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Heidelberg, pp 177–190. https://doi.org/10.1007/978-3-540-74335-4

    Chapter  Google Scholar 

  39. Kwak KJ, Park SJ, Han JH, Kim MK, Oh SH, Han YS, Kang H (2011) Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. J Exp Bot 62:4003–4011. https://doi.org/10.1093/jxb/err101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. García-Arribas O, Mateo R, Tomczak MM, Davies PL, Mateu MG (2009) Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges. Protein Sci 16:227–238. https://doi.org/10.1110/ps.062448907

    Article  CAS  Google Scholar 

  41. Chattopadhyay MK (2002) Low temperature and oxidative stress. Curr Sci 83:109–109

    Google Scholar 

  42. Chattopadhyay MK, Raghu G, Sharma YVRK, Biju AR, Rajasekharan MV, Shivaji S (2011) Increase in oxidative stress at low temperature in an Antarctic bacterium. Curr microbiol 62:544–546. https://doi.org/10.1007/s00284-010-9742-y

    Article  CAS  PubMed  Google Scholar 

  43. Kostadinova N, Krumova E, Stefanova T, Dishliyska V, Angelova M (2012) Transient cold shock induces oxidative stress events in Antarctic fungi. In: Lushchak V (ed) Oxidative stress/book 1. InTech, Houston, pp 75–98

    Google Scholar 

  44. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12. https://doi.org/10.1104/pp.101.1.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11. https://doi.org/10.1016/0003-9861(86)90526-6

    Article  CAS  PubMed  Google Scholar 

  46. Touati D (1992) Regulation and protective role of the microbial superoxide dismutases. In: Touati D (ed) Molecular biology of free scavenging systems. Cold Spring Harbor Laboratory Press, pp 231–264

    Google Scholar 

  47. Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754. https://doi.org/10.1016/S0021-9258(19)83842-5

    Article  CAS  PubMed  Google Scholar 

  48. Smirnova GV, Zakirova ON, Oktiabr’skiĭ ON (2001) Role of the antioxidant system in response of Escherichia coli bacteria to cold stress [in Russian]. Mikrobiologiia 70:55–60 (PMID: 11338838)

    CAS  PubMed  Google Scholar 

  49. Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M (2003) MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12:913–923. https://doi.org/10.1016/S1097-2765(03)00402-7

    Article  CAS  PubMed  Google Scholar 

  50. Şahin E, Gümüşlü S (2004) Cold-stress-induced modulation of antioxidant defence: role of stressed conditions in tissue injury followed by protein oxidation and lipid peroxidation. Int J Biometeorol 48:165–171. https://doi.org/10.1007/s00484-004-0205-7

    Article  PubMed  Google Scholar 

  51. Zhou XF, Cui J, DeStefano AL, Chazaro I, Baldwin CT et al (2005) Polymorphisms in the promoter region of catalase gene and essential hypertension. Dis Markers 21:3–7. https://doi.org/10.1155/2005/487014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harris ED (1992) Regulation of antioxidant enzymes. FASEB J 6:2675–2683. https://doi.org/10.1096/fasebj.6.9.1612291

    Article  CAS  PubMed  Google Scholar 

  53. Witteveen CF, Veenhuis M, Visser J (1992) Localization of glucose oxidase and catalase activities in Aspergillus niger. Appl Environ Microbiol 58:1190–1194. https://doi.org/10.1128/aem.58.4.1190-1194.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bourdais A, Bidard F, Zickler D, Berteaux-Lecellier V, Silar P, Espagne E (2012) Wood utilization is dependent on catalase activities in the filamentous fungus Podospora anserina. PLoS ONE 7:e29820. https://doi.org/10.1371/journal.pone.0029820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He L, Duan Z, Yu M, Qi S, Wang Y, Lou H, He Q (2022) HDA-2-containing complex is required for activation of catalase-3 expression in Neurospora crassa. mBio 13(4):e0135122. https://doi.org/10.1128/mbio.01351-22

    Article  CAS  PubMed  Google Scholar 

  56. Yan Y, Huang X, Zhou Y, Li J, Liu F, Li X, Zhou S (2023) Cytosol peroxiredoxin and cell surface catalase differentially respond to H2O2 Stress in Aspergillus nidulans. Antioxidants 12:1333. https://doi.org/10.3390/antiox12071333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Singh R, Wiseman B, Deemagarn T, Jha V, Switala J, Loewen PC (2008) Comparative study of catalase-peroxidases (KatGs). Arch Biochem Biophys 471:207–214. https://doi.org/10.1016/j.abb.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  58. Yamada Y, Fujiwara T, Sato T, Igarashi N, Tanaka N (2002) The 2.0 A crystal structure of catalase-peroxidase from Haloarcula marismortui. Nat Struct Mol Biol 9:691–695. https://doi.org/10.1038/nsb834

    Article  CAS  Google Scholar 

  59. Bertrand T, Eady NAJ, Jones JN, Jesmin JM, Nagy JM, Jamart-Gregoire B, Raven EL, Brown KA (2004) Crystal structure of mycobacterium tuberculosis catalase-peroxidase. J Biol Chem 279:38991–38999. https://doi.org/10.1074/jbc.M402382200

    Article  CAS  PubMed  Google Scholar 

  60. Ten-I T, Kumasaka T, Higuchi W, Tanaka S, Yoshimatsu K, Fujiwara T, Sato T (2007) Expression, purification, crystallization and preliminary X-ray analysis of the Met244Ala variant of catalase-peroxidase (KatG) from the haloarchaeon Haloarcula marismortui. Acta Cryst Sect F Struct Biol Cryst Commun 63:940–943. https://doi.org/10.1107/S1744309107046489

    Article  CAS  Google Scholar 

  61. Zamocky M (2004) Phylogenetic relationships in class I of the superfamily of bacterial, fungal, and plant peroxidases. Eur J Biochem 271:3297–3309. https://doi.org/10.1111/j.1432-1033.2004.04262.x

    Article  CAS  PubMed  Google Scholar 

  62. Passardi F, Zamocky M, Favet J, Jakopitsch C, Penel C, Obinger C, Dunand C (2007) Phylogenetic distribution of catalase-peroxidases: Are there patches of order in chaos? Gene 397:101–113. https://doi.org/10.1016/j.gene.2007.04.016

    Article  CAS  PubMed  Google Scholar 

  63. Carpena X, Wiseman B, Deemagarn T, Singh R, Switala J, Ivancich A, Fita I, Loewen PC (2005) A molecular switch and electronic circuit modulate catalase activity in catalase-peroxidases. EMBO Rep 6:1156–1162. https://doi.org/10.1038/sj.embor.7400550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. CMLS 61:192–208. https://doi.org/10.1007/s00018-003-3206-5

    Article  CAS  PubMed  Google Scholar 

  65. Wingfield BD, Barnes I, de Beer ZW, De Vos L, Duong TA, Kanzi AM et al (2015) Draft genome sequences of Ceratocystis eucalypticola, Chrysoporthe cubensis, C. deuterocubensis, Davidsoniella virescens, Fusarium temperatum, Graphilbum fragrans, Penicillium nordicum, and Thielaviopsis musarum. IMA Fungus 6:493–506. https://doi.org/10.5598/imafungus.2015.06.02.13

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nielsen JC, Grijseels S, Prigent S, Ji B, Dainat J, Nielsen KF, Nielsen J (2017) Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat Microbiol 2:1–9. https://doi.org/10.1038/nmicrobiol.2017.44

    Article  CAS  Google Scholar 

  67. Wang W, Li T, Chen Q, Deng B, Deng L, Zeng K (2021) Transcription factor CsWRKY65 participates in the establishment of disease resistance of citrus fruit to penicillium digitatum. J Agric Food Chem 69:5671–5682. https://doi.org/10.1021/acs.jafc.1c01411c

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Krumova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dishliyska, V., Stoyancheva, G., Abrashev, R. et al. Catalase from the Antarctic Fungus Aspergillus fumigatus I-9–Biosynthesis and Gene Characterization. Indian J Microbiol 63, 541–548 (2023). https://doi.org/10.1007/s12088-023-01110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01110-8

Keywords

Navigation