Skip to main content
Log in

Transcriptome Analysis of Podoscypha petalodes Strain GGF6 Reveals the Diversity of Proteins Involved in Lignocellulose Degradation and Ligninolytic Function

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The present study reports transcriptomic profiling of a Basidiomycota fungus, Podoscypha petalodes strain GGF6 belonging to the family Podoscyphaceae, isolated from the North-Western Himalayan ranges in Himachal Pradesh, India. Podoscypha petalodes strain GGF6 possesses significant biotechnological potential as it has been reported for endocellulase, laccase, and other lignocellulolytic enzymes under submerged fermentation conditions. The present study attempts to enhance our knowledge of its lignocellulolytic potential as no previous omics-based analysis is available for this white-rot fungus. The transcriptomic analysis of P. petalodes GGF6 reveals the presence of 280 CAZy proteins. Furthermore, bioprospecting transcriptome signatures in the fungi revealed a diverse array of proteins associated with cellulose, hemicellulose, pectin, and lignin degradation. Interestingly, two copper-dependent lytic polysaccharide monooxygenases (AA14) and one pyrroloquinolinequinone-dependent oxidoreductase (AA12) were also identified, which are known to help in the lignocellulosic plant biomass degradation. Overall, this transcriptome profiling-based study provides deeper molecular-level insights into this Basidiomycota fungi, P. petalodes, for its potential application in diverse biotechnological applications, not only in the biofuel industry but also in the environmental biodegradation of recalcitrant molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Raw reads can be accessed using this link https://drive.google.com/drive/folders/1wnhbJvjAW3mYyJAFCpHYHAufwOY7PEvb?usp=sharing. The raw data can also be provided upon request.

Abbreviations

NCBI:

National centre for biotechnology information

BLAST:

Basic local alignment search tool

CAZyme:

Carbohydrate active enzymes

GH:

Glycoside hydrolases

GT:

Glycosyl transferases

CE:

Carbohydrate esterases

CBM:

Carbohydrate binding-module

PL:

Polysaccharide lyases

AA:

Auxiliary activity

References

  1. Mahajan R, Chandel S, Puniya AK, Goel G (2020) Effect of pretreatments on cellulosic composition and morphology of pine needle for possible utilization as substrate for anaerobic digestion. Biomass Bioenergy 141:105705. https://doi.org/10.1016/j.biombioe.2020.105705

    Article  CAS  Google Scholar 

  2. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492. https://doi.org/10.1007/s00253-011-3473-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Suryadi H, Judono JJ, Putri MR, Eclessia AD, Ulhaq JM, Agustina DN, Sumiati T (2022) Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon 8:e08865. https://doi.org/10.1016/J.HELIYON.2022.E08865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Miyauchi S, Hage H, Drula E, Lesage-Meessen L, Berrin JG, Navarro D, Favel A, Chaduli D, Grisel S, Haon M, Piumi F, Levasseur A, Lomascolo A, Ahrendt S, Barry K, LaButti KM, Chevret D, Daum C, Mariette J, Klopp C, Cullen D, de Vries RP, Gathman AC, Hainaut M, Henrissat B, Hildén KS, Kües U, Lilly W, Lipzen A, Mäkelä MR, Martinez AT, Morel-Rouhier M, Morin E, Pangilinan J, Ram AFJ, Wösten HAB, Ruiz-Dueñas FJ, Riley R, Record E, Grigoriev IV, Rosso MN (2020) Conservedwhite-rot enzymaticmechanismfor wood decay in the basidiomycota genus pycnoporus. DNA Res. https://doi.org/10.1093/DNARES/DSAA011

    Article  PubMed  PubMed Central  Google Scholar 

  5. Monclaro AV, de O. Gorgulho Silva C, Gomes HAR, de S. Moreira LR, Filho EXF (2022) The enzyme interactome concept in filamentous fungi linked to biomass valorization. Bioresour Technol 344:126200. https://doi.org/10.1016/J.BIORTECH.2021.126200

    Article  PubMed  CAS  Google Scholar 

  6. Wu D, Wei Z, Mohamed TA, Zheng G, Qu F, Wang F, Zhao Y, Song C (2022) Lignocellulose biomass bioconversion during composting: mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere 286:131635. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131635

    Article  PubMed  CAS  Google Scholar 

  7. Singhania RR, Patel AK, Raj T, Chen CW, Ponnusamy VK, Tahir N, Kim SH, Di Dong C (2022) Lignin valorisation via enzymes: a sustainable approach. Fuel 311:122608. https://doi.org/10.1016/J.FUEL.2021.122608

    Article  CAS  Google Scholar 

  8. Sena-Martins G, Almeida-Vara E, Duarte JC (2008) Eco-friendly new products from enzymatically modified industrial lignins. Ind Crops Prod 27:189–195. https://doi.org/10.1016/J.INDCROP.2007.07.016

    Article  CAS  Google Scholar 

  9. Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3:415–431. https://doi.org/10.1007/s13205-013-0167-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hage H, Miyauchi S, Virágh M, Drula E, Min B, Chaduli D, Navarro D, Favel A, Norest M, Lesage-Meessen L, Bálint B, Merényi Z, de Eugenio L, Morin E, Martínez AT, Baldrian P, Štursová M, Martínez MJ, Novotny C, Magnuson JK, Spatafora JW, Maurice S, Pangilinan J, Andreopoulos W, LaButti K, Hundley H, Na H, Kuo A, Barry K, Lipzen A, Henrissat B, Riley R, Ahrendt S, Nagy LG, Grigoriev IV, Martin F, Rosso MN (2021) Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ Microbiol. https://doi.org/10.1111/1462-2920.15423

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sharma D, Sud A, Bansal S, Mahajan R, Sharma BM, Chauhan RS, Goel G (2018) Endocellulase production by Cotylidia pannosa and its application in saccharification of wheat bran to bioethanol. BioEnergy Res 11:219–227. https://doi.org/10.1007/s12155-017-9890-z

    Article  Google Scholar 

  12. Sharma D, Goel G, Sud A, Chauhan RS (2015) A novel laccase from newly isolated Cotylidia pannosa and its application in decolorization of synthetic dyes. Biocatal Agric Biotechnol 4:661–666. https://doi.org/10.1016/J.BCAB.2015.07.008

    Article  Google Scholar 

  13. Sharma D, Garlapat VK, Goel G (2016) Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered 7:88–97. https://doi.org/10.1080/21655979.2016.1160190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mahajan R, Attri S, Sharma K, Singh N, Sharma D, Goel G (2018) Statistical assessment of DNA extraction methodology for culture-independent analysis of microbial community associated with diverse environmental samples. Mol Biol Rep 45:297–308. https://doi.org/10.1007/S11033-018-4162-3

    Article  PubMed  CAS  Google Scholar 

  15. White TJ, Bruns T, Lee SJ, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics—ScienceOpen. PCR Protoc Guide Methods Appl 18:315–322

    Google Scholar 

  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:1–9. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  19. Edgar RC (2004) MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:1–19. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  20. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz239

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu033

    Article  PubMed  PubMed Central  Google Scholar 

  23. Babraham Bioinformatics—FastQC a quality control tool for high throughput sequence data, (n.d.). https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed July 13, 2022)

  24. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Home·TransDecoder/TransDecoder Wiki·GitHub, (n.d.). https://github.com/TransDecoder/TransDecoder/wiki (accessed July 13, 2022)

  27. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. https://doi.org/10.1093/bioinformatics/btv351

    Article  PubMed  CAS  Google Scholar 

  28. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185. https://doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y (2018) DbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95–W101. https://doi.org/10.1093/nar/gky418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  PubMed  CAS  Google Scholar 

  31. Zhao L, Cao GL, Wang AJ, Ren HY, Dong D, Liu ZN, Guan XY, Xu CJ, Ren NQ (2012) Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresour Technol 114:365–369. https://doi.org/10.1016/j.biortech.2012.03.076

    Article  PubMed  CAS  Google Scholar 

  32. Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:1–9. https://doi.org/10.1186/GB-2000-1-6-REVIEWS3003

    Article  Google Scholar 

  33. Tramontina R, Franco Cairo JPL, Liberato MV, Mandelli F, Sousa A, Santos S, Rabelo SC, Campos B, Ienczak J, Ruller R, Damásio ARL, Squina FM (2017) The Coptotermes gestroi aldo–keto reductase: a multipurpose enzyme for biorefinery applications. Biotechnol Biofuels 10:4. https://doi.org/10.1186/s13068-016-0688-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Whittaker MM, Kersten PJ, Cullen D, Whittaker JW (1999) Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem 274:36226–36232. https://doi.org/10.1074/jbc.274.51.36226

    Article  PubMed  CAS  Google Scholar 

  35. Scharf M, Sethi A (2013) US patent application for novel lignases and aldo-keto reductases for conversion of lignin-containing materials to fermentable products patent. Google Patents, WO 2013126230 A1

  36. Kameshwar AKS, Qin W (2019) Systematic metadata analysis of brown rot fungi gene expression data reveals the genes involved in Fenton’s reaction and wood decay process. Mycology 11:22–37. https://doi.org/10.1080/21501203.2019.1703052

    Article  CAS  Google Scholar 

  37. Shelest E (2008) Transcription factors in fungi. FEMS Microbiol Lett 286:145–151. https://doi.org/10.1111/j.1574-6968.2008.01293.x

    Article  PubMed  CAS  Google Scholar 

  38. Kuuskeri J, Hakkinen M, Laine P, Smolander OP, Tamene F, Miettinen S, Nousiainen P, Kemell M, Auvinen P, Lundell T (2016) Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels 9:192. https://doi.org/10.1186/s13068-016-0608-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Vasco-Correa J, Li Y (2015) Solid-state anaerobic digestion of fungal pretreated Miscanthus sinensis harvested in two different seasons. Bioresour Technol 185:211–217. https://doi.org/10.1016/j.biortech.2015.02.099

    Article  PubMed  CAS  Google Scholar 

  40. Liu J, Wang ML, Tonnis B, Habteselassie M, Liao X, Huang Q (2013) Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production. Bioresour Technol 135:39–45. https://doi.org/10.1016/j.biortech.2012.10.095

    Article  PubMed  CAS  Google Scholar 

  41. Miyauchi S, Navarro D, Grisel S, Chevret D, Berrin JG, Rosso MN (2017) The integrative omics of white-rot fungus Pycnoporus coccineus reveals co-regulated CAZymes for orchestrated lignocellulose breakdown. PLoS ONE 12:e0175528. https://doi.org/10.1371/journal.pone.0175528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Carvalho AFA, de O. Neto P, da Silva DF, Pastore GM (2013) Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51:75–85. https://doi.org/10.1016/J.FOODRES.2012.11.021

    Article  CAS  Google Scholar 

  43. Itoh T, Ochiai A, Mikami B, Hashimoto W, Murata K (2006) Structure of unsaturated rhamnogalacturonyl hydrolase complexed with substrate. Biochem Biophys Res Commun 347:1021–1029. https://doi.org/10.1016/J.BBRC.2006.07.034

    Article  PubMed  CAS  Google Scholar 

  44. Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41:941–962. https://doi.org/10.1093/FEMSRE/FUX049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242. https://doi.org/10.1111/J.1574-4976.2005.00010.X

    Article  PubMed  CAS  Google Scholar 

  46. Min B, Park H, Jang Y, Kim JJ, Kim KH, Pangilinan J, Lipzen A, Riley R, Grigoriev IV, Spatafora JW, Choi IG (2015) Genome sequence of a white rot fungus Schizopora paradoxa KUC8140 for wood decay and mycoremediation. J Biotechnol 211:42–43. https://doi.org/10.1016/j.jbiotec.2015.06.426

    Article  PubMed  CAS  Google Scholar 

  47. Savinova OS, Moiseenko KV, Vavilova EA, Chulkin AM, Fedorova TV, Tyazhelova TV, Vasina DV (2019) Evolutionary relationships between the laccase genes of polyporales: orthology-based classification of laccase isozymes and functional insight from Trametes hirsuta. Front Microbiol 10:152. https://doi.org/10.3389/FMICB.2019.00152

    Article  PubMed  PubMed Central  Google Scholar 

  48. Westereng B, Cannella D, Wittrup Agger J, Jorgensen H, Larsen Andersen M, Eijsink VG, Felby C (2015) Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 5:18561. https://doi.org/10.1038/srep18561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Matsumura H, Umezawa K, Takeda K, Sugimoto N, Ishida T, Samejima M, Ohno H, Yoshida M, Igarashi K, Nakamura N (2014) Discovery of a eukaryotic pyrroloquinoline quinone-dependent oxidoreductase belonging to a new auxiliary activity family in the database of carbohydrate-active enzymes. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0104851

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fan Y, Zhang Z, Wang F, Li J, Hu K, Du Z (2019) Lignin degradation in corn stover catalyzed by lignin peroxidase from Aspergillus oryzae broth: effects of conditions on the kinetics. Renew Energy 130:32–40. https://doi.org/10.1016/j.renene.2018.06.037

    Article  CAS  Google Scholar 

  51. Martínez AT, Camarero S, Ruiz-Dueñas FJ, Martínez MJ (2018) Biological lignin degradation. In: Beckham GT (ed) Lignin valorization: emerging approaches. Royal Society of Chemistry, pp 199–225

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank their respective Universities/ Institutes for providing essential facilities and environment for research. Furthermore, the authors sincerely acknowledge the help provided by Dr. R.S. Chauhan and Dr. B.M. Sharma regarding providing the fungal culture.

Funding

The research was funded by the Department of Science and Technology, Government of India for the Indo-Russian collaborative project “Elucidating the linkage between key limiting processes and microorganisms during anaerobic degradation of lignocellulosic waste” INT/RUS/RFBR/P-175 to GG. GS is supported by the DST-INSPIRE Faculty Award from DST, Government of India. In addition, this work was partially supported by the Department of Electronics, IT, BT, and S&T of the Government of Karnataka, India.

Author information

Authors and Affiliations

Authors

Contributions

GG generated the idea. RM and DS cultured the fungi and isolated the RNA for transcriptome sequencing. SBH, VK, and GS performed the computational analysis. GS, RM, and GG wrote the manuscript. All authors edited and finalized the manuscript.

Corresponding authors

Correspondence to Gaurav Sharma or Gunjan Goel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12088_2022_1037_MOESM1_ESM.xlsx

Supplementary Table 1: Heatmap of %identity scores amongst the close relatives identified from its phylogenetic clade.Supplementary Table 2: Distribution of P. petalodes strain GGF6 unigenes among all Pfam families and their respective functions.Supplementary Table 3: Distribution of P. petalodes strain GGF6 unigenes among all TIGR families and their respective functions. (XLSX 130 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, R., Hudson, B.S., Sharma, D. et al. Transcriptome Analysis of Podoscypha petalodes Strain GGF6 Reveals the Diversity of Proteins Involved in Lignocellulose Degradation and Ligninolytic Function. Indian J Microbiol 62, 569–582 (2022). https://doi.org/10.1007/s12088-022-01037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-022-01037-6

Keywords

Navigation