Skip to main content

Advertisement

Log in

Immunostimulant Activity of Bacteria Isolated from Extreme Environments in Baja California Sur, Mexico: A Bioprospecting Approach

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Excessive use of antibiotics has led to an increase of pathogenic bacteria with multiple antibiotic resistance. Hypersaline and hyperthermal environments promote the development of several microorganisms that can potentially act as immunostimulants. Thus, the aim of this study was bioprospecting marine bacteria from these environments using mouse leukocytes as a cell model for assess immunostimulatory activity. Samples were taken from two evaporation ponds with 4 and 8% salinity (p/v) in a marine solar saltern (MSS) at Laguna Ojo de Liebre, Guerrero Negro and a shallow hydrothermal vent (SHV), Bahía Concepción under a mangrove forest both off Baja California Sur, México. From total number of isolates (N = 340), 267 were obtained from the MSS and 73 from the SHV. The 10 isolates that induced nitric oxide (NO) production in mouse splenocytes were identified using the 16S rRNA gene, of which Halomonas elongata, Halomonas sp., Pseudoalteromonas ruthenica, Bacillus subtilis and three Bacillus strains were isolated from the MSS ponds at 8% salinity and three Marinobacter lutaoensis strains from the SHV. Most of the selected bacteria were not cytotoxic for mouse splenocytes and enhanced phagocytic respiratory burst and antioxidant enzyme activities compared to the control immunostimulant (lipopolysaccharide from Escherichia coli). Selected bacteria from 8% salinity ponds in the MSS in Guerrero Negro had immunostimulant activity in vitro in mouse splenocytes. In conclusion, Bacillus subtilis SA4 220, Bacillus sp. SA4 62A, P. ruthenica SA4 40 as well as Halomonas sp. SA4 207 and Halomonas elongata SA8 44 increased several immunological parameters. Further research is needed to evaluate their potential application in preclinical models to fight against infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McEwen SA, Collignon PJ (2018) Antimicrobial resistance: a one health perspective. Microbiol Spectr 6(2):6–2. https://doi.org/10.1128/microbiolspec.ARBA-0009-2017

    Article  Google Scholar 

  2. Arora G, Bothra A, Prosser G, Arora K, Sajid A (2021) Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis. FEBS J 288(11):3375–3393. https://doi.org/10.1111/febs.15582

    Article  CAS  PubMed  Google Scholar 

  3. Gelband H, Molly Miller P, Pant S, et al (2015) The state of the world's antibiotics 2015 Center for Disease Dynamics, Economics & Policy (2015) State of the World’s Antibiotics, 2015. CDDEP: Washington, D.C.

  4. Ashraf R, Shah NP (2014) Immune system stimulation by probiotic microorganisms. Crit Rev Food Sci Nutr 54(7):938–956. https://doi.org/10.1080/10408398.2011.619671

    Article  CAS  PubMed  Google Scholar 

  5. Ameen F, AlNadhari S, Al-Homaidan AA (2021) Marine microorganisms as an untapped source of bioactive compounds. Saudi J Biol Sci 28(1):224. https://doi.org/10.1016/j.sjbs.2020.09.052

    Article  CAS  PubMed  Google Scholar 

  6. Gregory GJ, Boyd EF (2021) Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Comput Struct Biotechnol J 19:1014. https://doi.org/10.1016/j.csbj.2021.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giddings L, Newman DJ (2015) Bioactive compounds from terrestrial extremophiles. SpringerBriefs in Microbiology. https://doi.org/10.1007/978-3-319-13260-0

    Article  Google Scholar 

  8. Li T, Ding T, Li J (2019) Medicinal purposes: bioactive metabolites from marine-derived organisms. Mini Rev Med Chem 19(2):138–164. https://doi.org/10.2174/1389557517666170927113143

    Article  CAS  PubMed  Google Scholar 

  9. CONABIO (2016) Colecciones biológicas científicas de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. www.biodiversidad.gob.mx/especies/colecciones (accessed: September 4, 2021)

  10. Dillon JG, Carlin M, Gutierrez A, Nguyen V, Mclain N (2013) Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja California Sur, Mexico. Front Microbiol 4:1–13. https://doi.org/10.3389/fmicb.2013.00399

    Article  Google Scholar 

  11. Javor J (1984) Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl Environ Microbiol 48:352–360. https://doi.org/10.1128/aem.48.2.352-360.1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hernández-Morales P, Wurl J, Green-Ruiz C, Morata D (2021) Hydrogeochemical characterization as a tool to recognize “Masked Geothermal Waters” in Bahía Concepción. Mexico Resources 10(3):23. https://doi.org/10.3390/resources10030023

    Article  Google Scholar 

  13. Alam M, Parra-Saldivar R, Bilal M et al (2021) Algae-derived bioactive molecules for the potential treatment of sars-cov-2. Molecules 26(8):2134. https://doi.org/10.3390/molecules26082134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirk H, Caporaso JG, Walker JJ et al (2013) Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME 7:50–60

    Article  Google Scholar 

  15. Reyes-Becerril M, Ascencio-Valle F, Tovar-Ramírez D, Meseguer J, Esteban MA (2011) Effects of polyamines on cellular innate immune response and the expression of immune-relevant genes in gilthead seabream leucocytes. Fish Shell Immunol 30(1):248–254. https://doi.org/10.1016/j.fsi.2010.10.011

    Article  CAS  Google Scholar 

  16. Rajasabapathy R, Mohandass C, Colaco A, Dastager SG, Santos RS, Meena RM (2014) Culturable bacterial phylogeny from a shallow water hydrothermal vent of Espalamaca (Faial, Azores) reveals a variety of novel taxa. Curr Sci 1:106. https://www.jstor.org/stable/24099863

  17. Lentini V, Gugliandolo C (2014) Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by Illumina Sequencing Technology. Curr Microbiol 69:457–466. https://doi.org/10.1007/s00284-014-0609-5

    Article  CAS  PubMed  Google Scholar 

  18. Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout SR, Icrobiol A (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72(5):3685–3695. https://doi.org/10.1128/AEM.72.5.3685-3695.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davila-Ramos S, Estradas-Romero A, Prol-Ledesma RM, Juárez-López K (2015) Bacterial populations (first record) at two shallow hydrothermal vents of the Mexican pacific west coast. Geomicrobiol J 32(8):657–665. https://doi.org/10.1080/01490451.2014.980526

    Article  CAS  Google Scholar 

  20. Raymond B, Davis D, Bonsall MB (2011) Competition and reproduction in mixed infections of pathogenic and non-pathogenic Bacillus spp. J Invertebr Pathol 96:151–155. https://doi.org/10.1016/j.jip.2007.03.003

    Article  Google Scholar 

  21. Jung J, Shin J, Rhee YK, Cho C, Lee M, Hong H, Lee K (2015) In vitro and In vivo immunostimulatory activity of an exopolysaccharide-enriched fraction from Bacillus subtilis. J Appl Microbiol 118:739–752. https://doi.org/10.1111/jam.12742

    Article  CAS  PubMed  Google Scholar 

  22. Gugliandolo C, Spanò A, Lentini V, Arena A, Maugeri TL (2014) Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J Appl Microbiol 116(4):1028–1034. https://doi.org/10.1111/jam.12422

    Article  CAS  PubMed  Google Scholar 

  23. Maaetoft-Udsen K, Vynne N, Gram L (2013) Pseudoalteromonas strains are potent immunomodulators owing to low-stimulatory LPS. Innate Immun 19(2):160–173. https://doi.org/10.1177/1753425912455208

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Wei M, Zhang J, Yue Y, Wu N, Geng L, Sun C, Zhang Q, Wang J (2021) Structural characteristics and immune-enhancing activity of an extracellular polysaccharide produced by marine Halomonas sp. 2E1. Int J Biol Macromol 183:1660–1668. https://doi.org/10.1016/j.ijbiomac.2021.05.143

    Article  CAS  PubMed  Google Scholar 

  25. Pieretti G, Carillo S, Lindner B, Kim KK, Lee KC, Lee JS, Lanzetta R, Parrilli M, Corsaro MM (2012) Characterization of the core oligosaccharide and the O-antigen biological repeating unit from Halomonas stevensii lipopolysaccharide: the first case of O-antigen linked to the inner core. Chem 18(12):3729–3735. https://doi.org/10.1002/chem.201102550

    Article  CAS  Google Scholar 

  26. Kindzierski V, Raschke S, Knabe N, Siedler F, Scheffer B, Pfeiffer F, Marin-Sanguino A (2017) Osmoregulation in the halophilic bacterium Halomonas elongata: A case study for integrative systems biology. PLoS ONE 12:1–22. https://doi.org/10.1371/journal.pone.0168818

    Article  CAS  Google Scholar 

  27. Kuebutornye FK, Abarike ED, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol 87:820–828. https://doi.org/10.1016/j.fsi.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  28. Sangma T, Kamilya D (2015) Dietary Bacillus subtilis FPTB13 and chitin, single or combined, modulate systemic and cutaneous mucosal immunity and resistance of catla, Catla catla (Hamilton) against edwardsiellosis. Comp Immunol 43:8–15. https://doi.org/10.1016/j.cimid.2015.09.003

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) Mexico Projects: INFR-2014-01/225924 and PDCPN2014-01/248033. The authors are grateful to Diana Fischer for English edition and to the marine solar saltern Exportadora de Sal, S.A. de C.V. (ESSA) for their kind support to take samples.

Funding

This research was financially supported by CONACYT (INFR-2014–01/225924 and PDCPN2014-01/248033).

Author information

Authors and Affiliations

Authors

Contributions

GRV, RRG, GMB, MRB and CA designed the study. GRV conducted the experiments and wrote the first draft. MRB helped to conduct the experiments. CA revised and edited the manuscript. Funding adquisition. All authors read and approved the manuscript.

Corresponding author

Correspondence to C. Angulo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12088_2022_1002_MOESM1_ESM.pptx

Supplemental Figure 1. Phylogenetic tree of 16S rRNA gene sequence of selected isolates from the marine solar saltern (MSS) at Laguna Ojo de Liebre and the shallow hydrothermal vent (SHV) under a mangrove forest at Bahia Concepción, Baja California Sur, Mexico. The scale bar corresponded to 0.5 substitutions per nucleotide.

Detailed description of Materials and Methods.

Supplementary file2 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Valdez, G., Romero-Geraldo, R., Medina-Basulto, G. et al. Immunostimulant Activity of Bacteria Isolated from Extreme Environments in Baja California Sur, Mexico: A Bioprospecting Approach. Indian J Microbiol 62, 234–241 (2022). https://doi.org/10.1007/s12088-022-01002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-022-01002-3

Keywords

Navigation