Skip to main content
Log in

Photocatalytic TiO2/CdS/ZnS nanocomposite induces Bacillus subtilis cell death by disrupting its metabolism and membrane integrity

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) is widely characterized for its application in clinical diagnostics, therapeutics, cosmetics, nutrition, and environment management. Despite enormous potential, its dependence on ultraviolet (UV) light for photocatalytic activity limits its commercialization. Accordingly in the present study, a photo catalytically superior ternary complex of TiO2 with Cadmium sulfide/Zinc sulfide (CdS/ZnS) has been synthesized, as well as, characterized for photo-induced antimicrobial activity. The band gap of crystalline TiO2/CdS/ZnS nanocomposite has been reduced (2.26 eV) and nanocomposite has shown the optimal photo-activation at 590 nm. TiO2 nanocomposite has significant bactericidal activity in visible light (P < 0.01). Exposure of the TiO2 nanocomposite affected the cellular metabolism by altering the 1681 metabolic features (P < 0.001) culminating in poor cellular survivability. Additionally, photo-induced reactive oxygen species generation through nanocomposite disrupts the microbial cellular structure. The present study synthesized photocatalytic nanocomposite as well as unveiled the holistic cellular effect of theTiO2/CdS/ZnS nanocomposite. Additionally, the present study also indicated the potential application of TiO2/CdS/ZnS nanocomposite for sustainable environment management, therapeutics, and various industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patel SKS, Kumar V, Mardina P, Li J, Lestari R, Kalia VC, Lee JK (2018) Methanol production from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. Bioresour Technol 263:25–32. https://doi.org/10.1016/j.biortech.2018.04.096

    Article  PubMed  CAS  Google Scholar 

  2. Patel SKS, Lee JK, Kalia VC (2018) Beyond the theoretical yields of dark-fermentative biohydrogen. Indian J Microbiol 58:529–530. https://doi.org/10.1007/s12088-018-0759-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Panday D, Patel SKS, Singh R, Kumar P, Thakur V, Chand D (2019) Solvent-tolerant acyltransferase from Bacillus sp. APB-6: purification and characterization. Indian J Microbiol 59:500–507. https://doi.org/10.1007/s12088-019-00836-8

    Article  CAS  Google Scholar 

  4. Patel SKS, Ray S, Prakash J, Wee JH, Kim S-Y, Lee J-K, Kalia CV (2019) Co-digestion of biowastes to enhance biological hydrogen production by defined mixed bacterial cultures. Indian J Microbiol 59:154–160. https://doi.org/10.1007/s12088-018-00777-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lee J-K, Patel SKS, Sung BH, Kalia VC (2020) Biomolecules from municipal and food industry wastes: an overview. Bioresour Technol 298:122346. https://doi.org/10.1016/j.biortech.2029.122346

    Article  PubMed  CAS  Google Scholar 

  6. Patel SKS, Gupta RK, Kalia VC, Lee J-K (2021) Integrating anaerobic digestion of potato peels to methanol production by methanotrophs immobilized on banana leaves. Bioresour Technol 323:124550. https://doi.org/10.1016/j.biortech.2020.124550

    Article  PubMed  CAS  Google Scholar 

  7. Patel SKS, Gupta RK, Kumar V, Kondaveeti S, Kumar A, Das D, Kalia VC, Lee J-K (2020) Biomethanol production from methane by immobilized co-cultures of methanotrophs. Indian J Microbiol 60:318–324. https://doi.org/10.1007/s12088-020-00883-

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. https://doi.org/10.1007/s12088-017-0643-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kondaveeti S, Patel SKS, Woo J, Wee JH, Kim S-Y, Al-Raoush RI, Kim I-W, Kalia VC, Lee J-K (2019) Characterization of cellobiohydrolases from Schizophyllum commune KMJ820. Indian J Microbiol 60:160–166. https://doi.org/10.1007/s12088-019-00843-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Muneeswaran G, Patel SKS, Kondaveeti S, Shanmugam R, Gopinath K, Kumar V, Kim S-Y, Lee J-K, Kalia VC, Kim IW (2021) Biotin and Zn2+ increase xylitol production by Candida tropicalis. Indian J Microbiol 61:331–337. https://doi.org/10.1007/s12088-021-00960-4

    Article  PubMed  CAS  Google Scholar 

  11. Pagolu R, Singh R, Shanmugam R, Kondaveeti S, Patel SKS, Kalia VC, Lee J-K (2021) Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles. Bioresour Technol 331:125063. https://doi.org/10.1016/j.biortech.2021.125063

    Article  PubMed  CAS  Google Scholar 

  12. Patel SKS, Otari SV, Li J, Kim DR, Kim SC, Cho BK, Kalia VC, Kang YC, Lee J-K (2018) Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J Hazard Mater 347:442–450. https://doi.org/10.1016/j.jhazmat.2018.01.003

    Article  PubMed  CAS  Google Scholar 

  13. Kumar V, Patel SKS, Gupta RK, Otari SV, Gao H, Lee J-K, Zhang L (2019) Enhanced saccharification and fermentation of rice straw by reducing the concentration of phenolic compounds using an immobilization enzyme cocktail. Biotechnol J 14:1800468. https://doi.org/10.1002/biot.201800468

    Article  CAS  Google Scholar 

  14. Patel SKS, Choi H, Lee J-K (2019) Multi-metal based inorganic–protein hybrid system for enzyme immobilization. ACS Sustain Chem Eng 7:13633–13638. https://doi.org/10.1021/acssuschemeng.9b02583

    Article  CAS  Google Scholar 

  15. Patel SKS, Gupta RK, Kumar V, Mardina P, Lestari R, Kalia VC, Choi M-S, Lee J-K (2019) Influence of metal ions on the immobilization of β-glucosidase through protein-inorganic hybrids. Indian J Microbiol 59:370–374. https://doi.org/10.1007/s12088-019-0796-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. Patel SKS, Gupta RK, Kim S-Y, Kim I-W, Kalia VC, Lee J-K (2021) Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian J Microbiol 61:45–54. https://doi.org/10.1007/s12088-020-00912-4

    Article  PubMed  CAS  Google Scholar 

  17. Kalia VC, Patel SKS, Kang YC, Lee JK (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37:68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006

    Article  PubMed  CAS  Google Scholar 

  18. Parasuraman P, Devadatha B, Sarma VV, Ranganathan S, Ampasala DR, Reddy D, Kumavath R, Kim I-W, Patel SKS, Kalia VC, Lee J-K, Siddhardha B (2020) Inhibition of microbial quorum sensing mediated virulence factors by Pestalotiopsis sydowiana. J Microbiol Biotechnol 30:571–582. https://doi.org/10.4014/jmb.1907.07030

    Article  PubMed  CAS  Google Scholar 

  19. Patel SK, Lee JK, Kalia VC (2020) Deploying biomolecules as anti-COVID-19 agents. Indian J Microbiol 60:263–268. https://doi.org/10.1007/s12088-020-00893-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rishi P, Thakur K, Vij S, Rishi L, Singh A, Kaur IP, Patel SKS, Lee J-K, Kalia VC (2020) Diet, Gut Microbiota and COVID-19. Indian J Microbiol 60:420–429. https://doi.org/10.1007/s12088-020-00908-0

    Article  PubMed Central  CAS  Google Scholar 

  21. Kalia VC, Patel SKS, Cho B-K, Wood TK, Lee J-K (2021) Emerging applications of bacteria as anti-tumor agents. Sem Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.05.012

    Article  Google Scholar 

  22. Kalia VC, Patel SKS, Shanmugam R, Lee J-K (2021) Polyhydroxy alkanoates: trends and advances towards biotechnological applications. Bioresour Technol 326:124737. https://doi.org/10.1016/j.biortech.2021.124737

    Article  PubMed  CAS  Google Scholar 

  23. Patel SKS, Kim J-H, Kalia VC, Lee J-K (2019) Antimicrobial activity of aminoderivatized cationic polysaccharides. Indian J Microbiol 59:96–99. https://doi.org/10.1007/s12088-018-00764-7

    Article  PubMed  CAS  Google Scholar 

  24. Otari SV, Pawar SH, Patel SKS, Singh RK, Kim S-Y, Lee J-H, Zhang L, Lee J-K (2017) Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J Microbiol Biotechnol 27:731–738. https://doi.org/10.4014/jmb.1610.10019

    Article  PubMed  CAS  Google Scholar 

  25. Wanag A, Rokicka P, Kusiak-Nejman E, Kapica-Kozar J, Wrobel RJ, Markowska-Szczupak A, Morawski AW (2018) Antibacterial properties of TiO2 modified with reduced graphene oxide. Ecotoxicol Environ Saf 147:788–793. https://doi.org/10.1016/j.ecoenv.2017.09.039

    Article  PubMed  CAS  Google Scholar 

  26. Kumar N, Chauhan NS, Mittal A, Sharma S (2018) TiO2 and its composites as promising biomaterials: a review. Biometals 31(2):147–159. https://doi.org/10.1007/s10534-018-0078-6

    Article  PubMed  CAS  Google Scholar 

  27. Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, Sobotta L (2020) Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials (Basel) 10(2):387. https://doi.org/10.3390/nano10020387

    Article  CAS  Google Scholar 

  28. Mittal A, Sharma S, Kumari V, Yadav S, Chauhan NS, Kumar N (2019) Highly efficient, visible active TiO2/CdS/ZnS photocatalyst, study of activity in an ultra low energy consumption LED based photo reactor. J Mater Sci: Mater Electron 30:17933–17946. https://doi.org/10.1007/s10854-019-02147-6

    Article  CAS  Google Scholar 

  29. Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14:487–494. https://doi.org/10.1007/s10311-016-0586-y

    Article  CAS  Google Scholar 

  30. Planchon M, Léger T, Spalla O, Huber G, Ferrari R (2017) Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli. PLoS ONE 12(6):e0178437. https://doi.org/10.1371/journal.pone.0178437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dong Y, Zhu H, Shen Y, Zhang W, Zhang L (2019) Antibacterial activity of silver nanoparticles of different particle size against Vibrio natriegens. PLoS ONE 14(9):e0222322. https://doi.org/10.1371/journal.pone.0222322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang A, Sun H, Xu H, Qiu S, Wang X (2013) Cell metabolomics. OMICS 17(10):495–501. https://doi.org/10.1089/omi.2012.0090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Patel SKS, Choi SH, Kang YC, Lee J-K (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8:6728–6738. https://doi.org/10.1039/C6NR00346J

    Article  PubMed  CAS  Google Scholar 

  34. Patel SKS, Choi SH, Kang YC, Lee J-K (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9:2213–2222. https://doi.org/10.1021/acsami.6b05165

    Article  CAS  Google Scholar 

  35. Patel SKS, Anwar MZ, Kumar A, Otari SV, Pagolu R, Kim SY, Kim IW, Lee J-K (2018) Fe2O3 yolk-shell particles-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8. https://doi.org/10.1016/j.bej.2017.12.013

    Article  CAS  Google Scholar 

  36. Otari SV, Patel SKS, Kim S-Y, Haw JR, Kalia VC, Kim I-W, Lee J-K (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59:105–108. https://doi.org/10.1007/s12088-018-0768-3

    Article  PubMed  CAS  Google Scholar 

  37. Otari SV, Shinde VV, Gao H, Patel SKS, Kalia VC, Kim IW, Lee JK (2019) Biomolecule entrapped SiO2 nanoparticles for ultrafast green synthesis of silver nanoparticle-decorated hybrid nanostructures as effective catalyst. Ceram Int 45:5876–5882. https://doi.org/10.1016/j.ceramint.2018.12.054

    Article  CAS  Google Scholar 

  38. Patel SKS, Jeon MS, Gupta RK, Jeon Y, Kalia VC, Kim SC, Cho BK, Kim DR, Lee J-K (2019) Hierarchical macro-porous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977. https://doi.org/10.1021/acsami.9b03420

    Article  PubMed  CAS  Google Scholar 

  39. Kumar A, Park GD, Patel SKS, Kondaveeti S, Otari S, Anwar MZ, Kalia VC, Singh Y, Kim SC, Cho B-K, Sohn J-H, Kim DR, Kang YC, Lee J-K (2019) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng J 359:1252–1264. https://doi.org/10.1016/j.cej.2018.11.052

    Article  CAS  Google Scholar 

  40. Otari SV, Patel SKS, Kalia VC, Lee J-K (2020) One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction. Bioresour Technol 302:122887. https://doi.org/10.1016/j.biortech.2020.122887

    Article  PubMed  CAS  Google Scholar 

  41. Wu K, Wu P, Zhu J, Liu C, Dong X, Wu J, Meng G, Xu K, Hou J, Liu Z, Guo X (2019) Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chem Eng J 360:221–230. https://doi.org/10.1016/j.cej.2018.11.211

    Article  CAS  Google Scholar 

  42. Azizi-Lalabadi M, Ehsani A, Divband B, Alizadeh-Sani M (2010) Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep 9:17439. https://doi.org/10.1038/s41598-019-54025-0

    Article  Google Scholar 

  43. Ahmed V, Verma MK, Gupta S, Mandhan V, Chauhan NS (2018) Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Front Microbiol 9:159. https://doi.org/10.3389/fmicb.2018.00159

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hong Y, Zeng J, Wang X, Drlica K, Zhao X (2019) Post-stress bacterial cell death mediated by reactive oxygen species. Proc Natl Acad Sci USA 116:10064–10071. https://doi.org/10.1073/pnas.1901730116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rice KC, Bayles KW (2008) Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 72(1):85–109. https://doi.org/10.1128/MMBR.00030-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Anuj Mittal would like to thank Council of Scientific and Industrial Research (CSIR) for fellowships.

Funding

The work was supported by grant from Principle Scientific Advisor, Government of India for the project entitled “Delhi Research Implementation and Innovation (DRIIV)”.

Author information

Authors and Affiliations

Authors

Contributions

NSC and NK designed the study. AM carried out nanocomposite synthesis and characterization, MY and TK assessed the antimicrobial properties. RC and SG performed metabolomics analysis. NSC, NK, AM, and MY performed data analysis and integration. All authors contributed to the manuscript preparation.

Corresponding author

Correspondence to Nar Singh Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Mittal, A., Yadav, M. et al. Photocatalytic TiO2/CdS/ZnS nanocomposite induces Bacillus subtilis cell death by disrupting its metabolism and membrane integrity. Indian J Microbiol 61, 487–496 (2021). https://doi.org/10.1007/s12088-021-00973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00973-z

Keywords

Navigation