Skip to main content
Log in

Two New Strains of Wolbachia Affecting Natural Avocado Thrips

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Wolbachia is an obligate intracellular bacterium with a high frequency of infection and a continental distribution in arthropods and nematodes. This endosymbiont can induce various reproductive phenotypes in their hosts and has been previously found naturally in several pests including thrips (Thripidae). These insects cause physical fruit damage and economic losses in avocado. The presence of Wolbachia was evaluated for the first time in avocado thrips populations of Frankliniella sp. and Scirtothrips hansoni sp.n. from eastern Antioquia. DNA from adult thrips individuals was used to assess the detection of Wolbachia by amplifying a fragment (600 bp) of the Wolbachia major surface protein (wsp) gene. Results confirmed the presence of two new Wolbachia strains in these two thrips species, with a higher percentage of natural infection in S. hansoni sp.n. The first Wolbachia species was found in Frankliniella sp. and belongs to supergroup A and the second was detected in S. hansoni sp.n. and is part of supergroup B. Wolbachia was more frequently found in females (32.73%), and only found in one male. Analysis of phylogenetic relationships, suggests that the two new Wolbachia sequences (wFran: Frankliniella and wShan: Scirtothrips hansoni) detected here represent two new groups for this endosymbiont. The haplotype network shows the presence of two possible haplotypes for each strain. Future studies to evaluate the possible use of Wolbachia as a control agent in avocado thrips are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets supporting the conclusions of this article are included within the article and its additional file. The newly-generated sequences are submitted to the GenBank database under accession numbers MT649512-MT649530 for 16S rRNA sequence and MT647247-MT647265 for wsp sequence.

References

  1. Li K, Stanojević M, Stamenković G et al (2019) Insight into diversity of bacteria belonging to the order Rickettsiales in 9 arthropods species collected in Serbia. Sci Rep 9:18680. https://doi.org/10.1038/s41598-019-55077-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Landmann F (2019) The Wolbachia Endosymbionts. Bact Intracellularity. https://doi.org/10.1128/microbiolspec.bai-0018-2019

    Article  Google Scholar 

  3. Tolley SJA, Nonacs P, Sapountzis P (2019) Wolbachia horizontal transmission events in ants: What do we know and what can we learn? Front Microbiol 10:296. https://doi.org/10.3389/fmicb.2019.00296

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vivero RJ, Cadavid-Restrepo G, Moreno Herrera CX, Uribe Soto SI (2017) Molecular detection and identification of Wolbachia in three species of the genus Lutzomyia on the Colombian Caribbean coast. Parasit Vectors 10:110. https://doi.org/10.1186/s13071-017-2031-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Inácio da Silva LM, Dezordi FZ, Paiva MHS, Wallau GL (2021) Systematic review of Wolbachia symbiont detection in mosquitoes: an entangled topic about methodological power and true symbiosis. Pathogens 10:1–20. https://doi.org/10.3390/pathogens10010039

    Article  CAS  Google Scholar 

  6. Baldo L, Werren JH (2007) Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with MLST. Curr Microbiol 55:81–87. https://doi.org/10.1007/s00284-007-0055-8

    Article  CAS  PubMed  Google Scholar 

  7. Pascar J, Chandler CH (2018) A bioinformatics approach to identifying Wolbachia infections in arthropods. PeerJ 6:e5486. https://doi.org/10.7717/peerj.5486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bravo-Pérez D, Santillán-Galicia MT, Johansen-Naime RM et al (2018) Species diversity of thrips (Thysanoptera) in selected avocado orchards from Mexico based on morphology and molecular data. J Integr Agric 17:2509–2517. https://doi.org/10.1016/S2095-3119(18)62044-1

    Article  Google Scholar 

  9. Varon Devia EH (2014) Trips, bichos candela. In: Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate. Manual Técnico CORPOICA, Centro de Investigación la Selva. Corporación Colombiana de Investigación Agropecuaria, Antioquia, pp 257–265. http://hdl.handle.net/20.500.12324/12616

  10. Arakaki N, Miyoshi T, Noda H (2001) Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc R Soc B Biol Sci 268:1011–1016. https://doi.org/10.1098/rspb.2001.1628

    Article  CAS  Google Scholar 

  11. Ding T, Chi H, Gökçe A et al (2018) Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Sci Rep 8:3346. https://doi.org/10.1038/s41598-018-21689-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dickey AM, Trease AJ, Jara-Cavieres A et al (2014) Estimating bacterial diversity in Scirtothrips dorsalis (Thysanoptera: Thripidae) via next generation sequencing. Florida Entomol 97:362–366. https://doi.org/10.1896/054.097.0204

    Article  Google Scholar 

  13. Powell CM, Lopez Montiel A, Beddingfield B et al (2015) Comparison of bacterial communities of flower thrips (Frankliniella tritici) and potato psyllid (Bactericera cockerelli). Southwest Entomol 40:765–773. https://doi.org/10.3958/059.040.0404

    Article  Google Scholar 

  14. Kaczmarczyk A, Kucharczyk H, Kucharczyk M et al (2018) First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis. Sci Rep 8:14376. https://doi.org/10.1038/s41598-018-32747-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gawande SJ, Anandhan S, Ingle A et al (2019) Microbiome profiling of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae). PLoS ONE 14:e0223281. https://doi.org/10.1371/journal.pone.0223281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cavalleri A, Mound LA (2012) Toward the identification of Frankliniella species in Brazil (Thysanoptera, Thripidae). Zootaxa 30:1–30. https://doi.org/10.5281/zenodo.246160

    Article  Google Scholar 

  17. Mound L, Hoddle M (2016) The Scirtothrips perseae species-group (Thysanoptera), with one new species from avocado, Persea americana. Zootaxa 4079:388–392. https://doi.org/10.11646/zootaxa.4079.3.7

    Article  PubMed  Google Scholar 

  18. Cano-Calle D, Saldamando-Benjumea CI, Moreno-Herrera CX, Arango-Isaza RE (2020) Molecular characterization of thrips (Thysanoptera: Thripidae) from commercial avocado crops (Persea americana Mill) in eastern Antioquia and study of the associated microbial diversity. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/78594

  19. Cole JR, Wang Q, Cardenas E et al (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145. https://doi.org/10.1093/nar/gkn879

    Article  CAS  Google Scholar 

  20. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  22. Martin DP, Murrell B, Golden M et al (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. https://doi.org/10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ronquist F, Teslenko M, Van Der Mark P et al (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC et al (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  25. Bykov RA, Yudina MA, Gruntenko NE et al (2019) Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster. BMC Evol Biol 19:48. https://doi.org/10.1002/arch.21776

    Article  CAS  Google Scholar 

  26. Jacob TK, Dsilva S, Senthil Kumar CM et al (2014) Single strain infection of adult and larval cardamom thrips (Sciothrips cardamomi) by Wolbachia subgroup Con belonging to supergroup B in India. Invertebr Reprod Dev 59:1–8. https://doi.org/10.1080/07924259.2014.970237

    Article  Google Scholar 

  27. Karami M, Moosa-Kazemi SH, Oshaghi MA et al (2016) Wolbachia endobacteria in natural populations of Culex pipiens of Iran and its phylogenetic congruence. J Arthropod Borne Dis 10:347–363

    PubMed  PubMed Central  Google Scholar 

  28. Saurav G, Daimei G, Singh VR et al (2016) Detection and Localization of Wolbachia in Thrips palmi Karny (Thysanoptera: Thripidae). Indian J Microbiol. https://doi.org/10.1007/s12088-016-0567-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ambika S, Rajagopal R (2018) Lumen anatomy and localization of Wolbachia sp. in the thrips, Plicothrips apicalis (Bagnall). Curr Sci 115:1297–1304. https://doi.org/10.18520/cs/v115/i7/1297-1304

    Article  Google Scholar 

  30. Ford SA, Allen SL, Ohm JR et al (2019) Selection on Aedes aegypti alters Wolbachia-mediated dengue virus blocking and fitness. Nat Microbiol 4:1832–1839. https://doi.org/10.1038/s41564-019-0533-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu H, Li H, Song F et al (2017) Novel insights into mitochondrial gene rearrangement in thrips (Insecta: Thysanoptera) from the grass thrips, Anaphothrips obscurus. Sci Rep 7:4284. https://doi.org/10.1038/s41598-017-04617-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Braig HR, Zhou W, Dobson SL, Neill SLO (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180:2373–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang XH, Zhu DH, Liu Z et al (2013) High levels of multiple infections, recombination and horizontal transmission of Wolbachia in the Andricus mukaigawae (Hymenoptera; Cynipidae) communities. PLoS ONE 8:e78970. https://doi.org/10.1371/journal.pone.0078970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van der Kooi CJ, Schwander T (2014) Evolution of asexuality via different mechanisms in grass thrips (Thysanoptera: Aptinothrips). Evolution 68:1883–1893. https://doi.org/10.1111/evo.12402

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Mr. Roberto Aguilar and the laboratorio de Biología Celular y Molecular of the Universidad Nacional de Colombia, sede Medellín. We thank the owners of the farms who permitted the collection of biological material.

Funding

The research reported in this publication was supported by the Universidad Nacional de Colombia under Project Code 202010013471, contract number FP44842-132-2017. This material is based on work supported by the Ministry of science, technology, and innovation (Minciencias) of Colombia Graduate Research Fellowship Program for Daniela Cano-Calle No.727 in 2015 under Grant No. 201010020475. Foundation for the Promotion of Research and Technology, Bank of the Republic of Colombia Project No 201423.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and revision of the manuscript. Cano-Calle D. contributed to the development of experiments in the laboratory and field trips. Vivero-Gomez R., Moreno-Herrera C., Saldamando-Benjumea C., and Arango-Isaza R., Designed the study, analyzed the data, and contributed to writing the manuscript.

Corresponding author

Correspondence to Daniela Cano-Calle.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists in the study.

Ethics Statement

The insect collections were made between April and August 2017 through the certificate issued by Universidad Nacional de Colombia, Sede Medellín with the permission to collect specimens of wild species of biological diversity with scientific research purposes produced by the National Authority for Environmental Licenses (ANLA) to Universidad Nacional de Colombia through resolution No. 0255 of March 14, 2014 (article 3). Thrips were collected on private property and permission was received from the landowners prior to sampling procedures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material. Fig. 1 Map of the localities studied in Colombia. Fig. 2 PCR amplification from Wolbachia of the16S rRNA and wsp genes from wild thrips. a) amplification of 16S rRNA gene and b) amplification of wsp gene. Lines 1-15 correspond to Scirtothrips hansoni sp.n.. C-: negative control (mix PCR plus sterile water free DNAse and RNAse); C +: positive control; M: 100 bp molecular marker. Fig. 3 Wolbachia phylogeny found in populations of natural thrips. a) Maximum likelihood Tree using partial sequences of 16S rRNA gene from Wolbachia and Kimura 2 parameter with 1000 replicates. The numbers in nodes correspond to the bootstrap support inferred by analysis. Blue boxes correspond to the Wolbachia wShan strain found in Scirtothrips hansoni sp.n.and red boxes correspond to Wolbachia wFran strain from Frankliniella. Outgroups: Anaplasma marginale and Ehrlichia ruminantium. Fig. 4 Bayesian probability inference tree based on partial sequences of wsp gene obtained from GenBank and Wolbachia sequences amplified from avocado thrips. The posterior probability values are indicated by numbers on nodes. In blue are Wolbachia found in Scirtothrips hansoni and in red are those found in Frankliniella. Outgroup: Bemicia tabaci wBtab. Fig. 5 Wolbachia strain haplotype network. wShan and wFran strains correspond to Wolbachia strains found in this work in Scirtothrips hansoni sp. n. and Frankliniella, respectively. Blue and red boxes enclose two supergroups A and B with their haplotypes

Supplementary file1 (JPG 90 kb)

Supplementary file2 (JPG 53 kb)

Supplementary file3 (JPG 4755 kb)

Supplementary file4 (JPG 8762 kb)

Supplementary file5 (JPG 812 kb)

12088_2021_951_MOESM6_ESM.docx

Table 1 Information on samples used for the study. * Possibly corresponds to F. gardeniae or F. gossypiana. Supplementary file6 (DOCX 14 kb)

12088_2021_951_MOESM7_ESM.docx

Table 2 Frequency of natural infection by Wolbachia in thrips obtained from farms in eastern Antioquia, Colombia. Supplementary file7 (DOCX 12 kb)

Table 3. Kimura 2-parameters distances for Wolbachia haplotypes of thrips. Supplementary file8 (DOCX 13 kb)

Table 4. Wolbachia haplotype allocation list with wsp gene. Supplementary file9 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cano-Calle, D., Saldamando-Benjumea, C.I., Vivero-Gómez, R.J. et al. Two New Strains of Wolbachia Affecting Natural Avocado Thrips. Indian J Microbiol 61, 348–354 (2021). https://doi.org/10.1007/s12088-021-00951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00951-5

Keywords

Navigation