Skip to main content
Log in

Complement Evasion Strategies of Human Pathogenic Bacteria

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Human pathogens need to overcome an elaborate network of host defense mechanisms in order to establish their infection, colonization, proliferation and eventual dissemination. The interaction of pathogens with different effector molecules of the immune system results in their neutralization and elimination from the host. The complement system is one such integral component of innate immunity that is critically involved in the early recognition and elimination of the pathogen. Hence, under this immune pressure, all virulent pathogens capable of inducing active infections have evolved immune evasive strategies that primarily target the complement system, which plays an essential and central role for host defense. Recent reports on several bacterial pathogens have elucidated the molecular mechanisms underlying complement evasion, inhibition of opsonic phagocytosis and cell lysis. This review aims to comprehensively summarize the recent findings on the various strategies adopted by pathogenic bacteria to escape complement-mediated clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sahu A, Lambris JD (2001) Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev 180:35–48. https://doi.org/10.1034/j.1600-065x.2001.1800103.x

    Article  CAS  PubMed  Google Scholar 

  2. Killick J, Morisse G, Sieger D, Astier AL (2018) Complement as a regulator of adaptive immunity. Semin Immunopathol 40:37–48. https://doi.org/10.1007/s00281-017-0644-y

    Article  CAS  PubMed  Google Scholar 

  3. Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6:132–142. https://doi.org/10.1038/nrmicro1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ricklin D, Reis ES, Dimitrios C, Gros MP, Lambris JD (2016) Complement component C3—the “Swiss Army Knife” of innate immunity and host defence. Immunol Rev 274:358. https://doi.org/10.1111/imr.12500

    Article  CAS  Google Scholar 

  5. Harboe M, Ulvund G, Vien L, Fung M, Mollnes TE (2004) The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin Exp Immunol 138:439–446. https://doi.org/10.1111/j.1365-2249.2004.02627.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement—a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797. https://doi.org/10.1038/ni.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852. https://doi.org/10.1146/annurev.immunol.23.021704.115835

    Article  CAS  PubMed  Google Scholar 

  8. Serna M, Giles JL, Morgan BP, Bubeck D (2016) Structural basis of complement membrane attack complex formation. Nat Commun 7:10587. https://doi.org/10.1038/ncomms10587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishida N, Walz T, Springer TA (2006) Structural transition of complement component C3 and its activation products. Proc Natl Acad Sci USA 103:19737–19742. https://doi.org/10.1073/pnas.0609791104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bajic G, Yatime L, Sim RB, Vorup-Jensen T, Anderson GR (2013) Structural insight on the recognition of surface bound opsonin by integrin I domain of complement receptor 3. Proc Natl Acad Sci USA 110:16426–16431. https://doi.org/10.1073/pnas.1311261110

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ricklin D, Ricklin-Lichtsteiner SK, Markiewski MM, Giesbrecht BV, Lambis JD (2008) Cutting edge: members of the Staphylococcus aureus extracellular fibrinogen-binding protein family inhibit the interaction of C3d with complement receptor 2. J Immunol 181:7463–7467. https://doi.org/10.4049/jimmunol.181.11.7463

    Article  CAS  PubMed  Google Scholar 

  12. Nangaku M (2003) Complement regulatory proteins: are they important in disease? J Am Soc Nephrol 14:2411–2413. https://doi.org/10.1097/01.ASN.0000088010.15313.A1

    Article  PubMed  Google Scholar 

  13. Noris M, Remuzzi G (2013) Overview of complement activation and regulation. Semin Nephrol 33:479–492. https://doi.org/10.1016/j.semnephrol.2013.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ermert D, Blom AM (2016) C4b-binding protein: the good, the bad and the deadly. Novel functions of an old friend. Immunol Lett 169:82–92. https://doi.org/10.1016/j.imlet.2015.11.014

    Article  CAS  PubMed  Google Scholar 

  15. Ferreira VP, Pangburn MK, Cortes C (2010) Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol 47:2187–2197. https://doi.org/10.1016/j.molimm.2010.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davis AE, Lu F, Mejia P (2010) C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost 104:886–893. https://doi.org/10.1160/TH10-01-0073

    Article  CAS  PubMed  Google Scholar 

  17. Ghannam A, Fauquert JL, Thomas C, Kemper C, Drouet C (2014) Human complement C3 deficiency: Th1 induction requires T-cell-derived complement C3a and CD46 activation. Mol Immunol 58:98–107. https://doi.org/10.1016/j.molimm.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  18. Ermerta D, Ram S, Laabei M (2019) The hijackers guide to escaping complement: lessons learned from pathogens. Mol Immunol 114:49–61. https://doi.org/10.1016/j.molimm.2019.07.018

    Article  CAS  Google Scholar 

  19. Hovingh ES, Van den Broek B, Kuipers B, Pinelli E, Rooijakkers SHM, Jongerius I (2017) Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface. PLoS Pathog 13:e1006531. https://doi.org/10.1371/journal.ppat.1006531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haleem KS, Ali YM, Yesilkaya H, Kohler T, Hammerschmidt S, Andrew PW, Schwaeble WJ, Lynch NJ (2018) The pneumococcal surface proteins PspA and PspC sequester host C4-binding protein to inactivate complement C4b on the bacterial surface. Infect Immun 19:87. https://doi.org/10.1128/IAI.00742-18

    Article  Google Scholar 

  21. Jarva H, Ram S, Vogel U, Blom AM, Meri S (2005) Binding of the complement inhibitor C4bp to serogroup B Neisseria meningitidis. J Immunol 174:6299–6307. https://doi.org/10.4049/jimmunol.174.10.6299

    Article  CAS  PubMed  Google Scholar 

  22. Ermert D, Weckel A, Agarwal V, Frick IM, Bjorck L, Blom AM (2013) Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells. J Biol Chem 288:32172–32183. https://doi.org/10.1074/jbc.M113.502955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghosh P (2011) The nonideal coiled coil of m protein and its multifarious functions in pathogenesis. In: Linke D, Goldman A (eds) Bacterial adhesion. Advances in experimental medicine and biology, vol 715. Springer, Dordrecht

    Google Scholar 

  24. Moreno-Torres A, Malvido-Jiménez IR, de la Peña-Moctezuma A, Castillo Sánchez LO, Fraga TR, Barbosa AS, Isaac L, Sahagún-Ruiz A (2019) Culture-attenuated pathogenic Leptospira lose the ability to survive to complement-mediated-killing due to lower expression of factor H binding proteins. Microbes Infect 21:377–385. https://doi.org/10.1016/j.micinf.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  25. Schneider MC, Prosser BE, Caesar JJ (2009) Neisseria meningitidis recruits factor H using protein mimicry of the host carbohydrates. Nature 458:890–893. https://doi.org/10.1038/nature07769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tommassen J, Arenas J (2017) Biological functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 16:256. https://doi.org/10.3389/fcimb.2017.00256

    Article  CAS  Google Scholar 

  27. Röttgerding F, Wagemakers A, Koetsveld J, Fingerle V, Kirschfink M, Hovius JW, Zipfel PF, Wallich R, Kraiczy P (2017) Immune evasion of Borrelia miyamotoi: CbiA, a novel outer surface protein exhibiting complement binding and inactivating properties. Sci Rep 9:7056. https://doi.org/10.1038/s41598-017-00412-4

    Article  CAS  Google Scholar 

  28. Marcinkiewicz AL, Dupuis AP, Zamba-Campero M, Nowak N, Kraiczy P, Ram S, Kramer LD, Lin YP (2019) Blood treatment of Lyme borrelia demonstrates the mechanism of CspZ-mediated complement evasion to promote systemic infection in vertebrate hosts. Cell Microbiol 21:e12998. https://doi.org/10.1111/cmi.12998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moulin P, Rong V, Ribeiro E, Silva A, Pederick VG, Camiade E, Mereghetti L, McDevitt CA, Hiron A (2019) Defining the role of the Streptococcus agalactiae Sht-Family proteins in zinc acquisition and complement evasion. J Bacteriol 1:1. https://doi.org/10.1128/JB.00757-18

    Article  Google Scholar 

  30. Garza DA, Riley SP, Martinez JJ (2017) Expression of Rickettsia Adr2 protein in E. coli is sufficient to promote resistance to complement-mediated killing, but not adherence to mammalian cells. PLoS ONE 12:e0179544. https://doi.org/10.1371/journal.pone.0179544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herr AB, Thorman AW (2017) Hiding in plain sight: immune evasion by the Staphylococcal protein SdrE. Biochem J 474:1803–1806. https://doi.org/10.1042/BCJ20170132

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Wu M, Hang T, Wang C, Yang Y, Pan W, Zang J, Zhang M, Zhang X (2017) Staphylococcus aureus SdrE captures complement factor H’s c-terminus via a novel ‘close, dock, lock and latch’ mechanism for complement evasion. Biochem J 474:1619–1631. https://doi.org/10.1042/BCJ20170085

    Article  CAS  PubMed  Google Scholar 

  33. Hallström T, Mörgelin M, Barthel D, Raguse M, Kunert A, Hoffmann R, Skerka C, Zipfel PF (2012) Dihydrolipoamide dehydrogenase of Pseudomonas aeruginosa is a surface-exposed immune evasion protein that binds three members of the factor H family and plasminogen. J Immunol 189:4939–4950. https://doi.org/10.4049/jimmunol.1200386

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Jenkins SA, Gu C, Shree A (2016) Bacillus anthracis spore surface protein BclA mediates complement factor H binding to spores and promotes spore persistence. PLoS Pathog 12:e1005678. https://doi.org/10.1371/journal.ppat.1005678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laabei M, Ermert D (2019) Catch me if you can: Streptococcus pyogenes complement evasion strategies. J Innate Immun 11:3–12. https://doi.org/10.1159/000492944

    Article  CAS  PubMed  Google Scholar 

  36. Rooijakkers SH, vanWamel WJB, Ruyken M, van Kessel KPM, van Strijp JA (2005) Anti-opsonic properties of staphylokinase. Microbes Infect 7:476–484. https://doi.org/10.1016/j.micinf.2004.12.01

    Article  CAS  PubMed  Google Scholar 

  37. Falugi F, Kim HK, Missiakas DM, Schneewind O (2013) Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. mBio 4:e00575-13. https://doi.org/10.1128/mBio.00575-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang X, Marichannegowda MH, Rakesh KP, Qin HL (2018) Master mechanisms of Staphylococcus aureus: consider its excellent protective mechanisms hindering vaccine development. Microbiol Res 212–213:59–66. https://doi.org/10.1016/j.micres.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  39. Zhang H, Liang W, Fan H, Yang J, Yang G, Wang X, Chen L, Liang T (2015) Immunological characterization and verification of recombinant streptococcal protein G. Mol Med Rep 12:6311–6315. https://doi.org/10.3892/mmr.2015.4162

    Article  CAS  PubMed  Google Scholar 

  40. Smith EJ, Visai L, Kerrigan SW, Speziale P, Foster TJ (2011) The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus. Infect Immun 79:3801–3809. https://doi.org/10.1128/IAI.05075-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pawel-Rammingen UV, Bjorck L (2003) IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr Opin Microbiol 6:50–55. https://doi.org/10.1016/s1369-5274(03)00003-1

    Article  Google Scholar 

  42. Honda-Ogawa M, Sumitomo T, Mori Y, Hamd DT, Ogawa T, Yamaguchi M, Nakata M, Kawabata S (2017) Streptococcus pyogenes endopeptidase O contributes to evasion from complement-mediated bacteriolysis via binding to human complement Factor C1q. J Biol Chem 292:4244–4254. https://doi.org/10.1074/jbc.M116.749275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hiyoshi H, Wangdi T, Lock G, Saechao C, Raffatellu M, Cobb BA, Bäumler AJ (2018) Mechanisms to evade the phagocyte respiratory burst arose by convergent evolution in typhoidal Salmonella serovars. Cell Rep 22:1787–1797. https://doi.org/10.1016/j.celrep.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rungelrath V, Weiße C, Schütze N, Müller U, Meurer M, Rohde M, Seele J, Valentin-Weigand P, Kirschfink M, Beineke A, Schrödl W, Bergmann R, Baums CG (2018) IgM cleavage by Streptococcus suis reduces IgM bound to the bacterial surface and is a novel complement evasion mechanism. Virulence 9:1314–1337. https://doi.org/10.1080/21505594.2018.1496778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE (2007) Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol 179:2600–2608. https://doi.org/10.4049/jimmunol.179.4.2600

    Article  CAS  PubMed  Google Scholar 

  46. Honda-Ogawa M, Ogawa T, Terao Y, Sumitomo T, Nakata M, Ikebe K, Maeda Y, Kawabata S (2013) Cysteine proteinase from Streptococcus pyogenes enables evasion of innate immunity via degradation of complement factors. J Biol Chem 288:15854–15864. https://doi.org/10.1074/jbc.M113.469106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jongerius I, Kohl J, Pandey MK, Ruyken M, van Kessel KP, van Strijp JA, Rooijakkers SH (2007) Staphylococcal complement evasion by various convertase-blocking molecules. J Exp Med 204:2461–2471. https://doi.org/10.1084/jem.20070818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rooijakkers SH, Wu J, Ruyken M, van Domselaar R, Planket KL, Tzekou A, Ricklin D, Lambris JD, Janssen BJ, van Strijp JA, Gros P (2009) Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol 10:721–727. https://doi.org/10.1038/ni.1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jongerius I, Garcia BL, Geisbrecht BV, van Strijp JA (2010) Convertase inhibitory properties of Staphylococcal extracellular complement-binding protein. J Biol Chem 285:14973–14979. https://doi.org/10.1074/jbc.M109.091975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13:529–543. https://doi.org/10.1038/nrmicro3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pietrocola G, Rindi S, Rosini R, Buccato S, Speziale P, Margarit I (2016) The Group B Streptococcus–secreted protein CIP Interacts with C4, preventing C3b deposition via the lectin and classical complement pathways. J Immunol 196:385–394. https://doi.org/10.4049/jimmunol.1501954

    Article  CAS  PubMed  Google Scholar 

  52. Xie J, Zhi H, Garrigues RJ, Keightley A, Garcia BL, Skare JT (2019) Structural determination of the complement inhibitory domain of Borrelia burgdorferi BBK32 provides insight into classical pathway complement evasion by Lyme disease spirochetes. PLoS Pathog 15:e1007659. https://doi.org/10.1371/journal.ppat.1007659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Locke JW (2019) Complement evasion in Borrelia spirochetes: mechanisms and opportunities for intervention. Antibiotics (Basel). https://doi.org/10.3390/antibiotics8020080

    Article  Google Scholar 

  54. Deng S, Xu T, Fang Q, Yu L, Zhu J, Chen L, Liu J, Zhou R (2018) The surface-exposed protein SntA contributes to complement evasion in zoonotic Streptococcus suis. Front Immunol 9:1063. https://doi.org/10.3389/fimmu.2018.01063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kang M, Ko YP, Liang X, Ross CL, Liu Q, Murray BE, Höök M (2013) Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of gram-positive bacteria inhibit complement activation via the classical pathway. J Biol Chem 288:20520–20531. https://doi.org/10.1074/jbc.M113.454462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cleary PP, Prahbu U, Dale JB, Wexler DE, Handley J (1992) Streptococcal C5a peptidase is a highly specific endopeptidase. Infect Immun 60:5219–5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ayón-Núñez DA, Fragoso G, Bobes RJ, Laclette JP (2018) Plasminogen-binding proteins as an evasion mechanism of the host’s innate immunity in infectious diseases. Biosci Rep. https://doi.org/10.1042/BSR20180705

    Article  PubMed  PubMed Central  Google Scholar 

  58. Blom AM, Bergmann S, Fulde M, Riesbeck K, Agarwal V (2014) Streptococcus pneumoniae phosphoglycerate kinase is a novel complement inhibitor affecting the membrane attack complex formation. J Biol Chem 289:32499–32511. https://doi.org/10.1074/jbc.M114.610212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kochi LT, Fernandes LGV, Souza GO, Vasconcellos SA, Heinemann MB, Romero EC, Kirchgatter K, Nascimento ALTO (2019) The interaction of two novel putative proteins of Leptospira interrogans with E-cadherin, plasminogen and complement components with potential role in bacterial infection. Virulence 10:734–753. https://doi.org/10.1080/21505594.2019.1650613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bestebroer J, Aerts PC, Rooijakkers SH, Pandey MK, Kohl J, van Strijp JA, de Haas CJ (2010) Functional basis for complement evasion by staphylococcal superantigen-like 7. Cell Microbiol 12:1506–1516. https://doi.org/10.1111/j.1462-5822.2010.01486.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hong YQ, Ghebrehiwet B (1992) Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol 62:133–138. https://doi.org/10.1016/0090-1229(92)90065-v

    Article  CAS  PubMed  Google Scholar 

  62. Rooijakkers SH, Van Strijp JA (2007) Bacterial complement evasion. Mol Immunol 44:23–32. https://doi.org/10.1016/j.molimm.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  63. Abreu AG, Barbosa AS (2017) How Escherichia coli circumvent complement-mediated killing. Front Immunol 8:452. https://doi.org/10.3389/fimmu.2017.00452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jusko M, Potempa J, Mizgalska D, Bielecka E, Ksiazek M, Riesbeck K, Garred P, Eick S, Blom AM (2015) A metalloproteinase Mirolysin of Tannerella forsythia inhibits all pathways of the complement system. J Immunol 195:2231–2240. https://doi.org/10.4049/jimmunol.1402892

    Article  CAS  PubMed  Google Scholar 

  65. Laarman AJ, Bardoel BW, Ruyken M, Fernie J, Milder FJ, van Strijp JA, Rooijakkers SH (2012) Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J Immunol 188:386–393. https://doi.org/10.4049/jimmunol.1102162

    Article  CAS  PubMed  Google Scholar 

  66. Langley R, Wines B, Willoughby N, Basu I, Proft T, Fraser JD (2005) The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc alpha RI binding and serum killing of bacteria. J Immunol 174:2926–2933. https://doi.org/10.4049/jimmunol.174.5.2926

    Article  CAS  PubMed  Google Scholar 

  67. Hallstrom T, Siegel C, Morgelin M, Kraiczy P, Skerka C, Zipfel PF (2013) CspA from Borrelia burgdorferi inhibits the terminal complement pathway. mBio. https://doi.org/10.1128/mBio.00481-13

    Article  PubMed  PubMed Central  Google Scholar 

  68. Akesson P, Sjoholm AG, Bjorck L (1996) Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J Biol Chem 271:1081–1088. https://doi.org/10.1074/jbc.271.2.1081

    Article  CAS  PubMed  Google Scholar 

  69. Marcinkiewicz AL, Kraiczy P, Lin YP (2017) There is a method to the madness: strategies to study host complement evasion by Lyme disease and relapsing fever Spirochetes. Front Microbiol 8:328. https://doi.org/10.3389/fmicb.2017.00328

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rautemaa R, Rautelin H, Puolakkainen HP, Kokkola A, Karkkainen P, Meri S (2001) Survival of Helicobacter pylori from complement lysis by binding of GPI-anchored Protectin (CD59). Gastroenterology 120:470–479. https://doi.org/10.1053/gast.2001.21197

    Article  CAS  PubMed  Google Scholar 

  71. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial anti-inflammatory agent. J Exp Med 199:687–695. https://doi.org/10.1084/jem.20031636

    Article  PubMed  PubMed Central  Google Scholar 

  72. Terao Y, Yamaguchi M, Hamada S, Kawabata S (2006) Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem 281:14215–14223. https://doi.org/10.1074/jbc.M513408200

    Article  CAS  PubMed  Google Scholar 

  73. Amdahl H, Haapasalo K, Tan L, Meri T, Kuusela PI, van Strijp JA, Rooijakkers S, Jokiranta TS (2017) Staphylococcal protein Ecb impairs complement receptor-1 mediated recognition of opsonized bacteria. PLoS ONE 12:e0172675. https://doi.org/10.1371/journal.pone.0172675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Muñoz VL, Porsch EA, St Geme JW (2019) Kingella kingae surface polysaccharides promote resistance to neutrophil phagocytosis and killing. mBio 25:10. https://doi.org/10.1128/mBio.00631-19

    Article  Google Scholar 

  75. Brangulis K, Akopjana I, Petrovskis I, Kazaks A, Kraiczy P, Tars K (2018) Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis. Sci Rep 8:11286. https://doi.org/10.1038/s41598-018-29651-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. da Silva LB, Miragaia Ldos S, Breda LC, Abe CM, Schmidt MC, Moro AM, Monaris D, Conde JN, Józsi M, Isaac L, Abreu PA, Barbosa AS (2015) Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA. Infect Immun 83:888–897. https://doi.org/10.1128/IAI.02844-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fraga TR, Isaac L, Barbosa AS (2016) Complement evasion by pathogenic Leptospira. Front Immunol 7:21. https://doi.org/10.3389/fimmu.2016.00623

    Article  CAS  Google Scholar 

  78. Kraiczy P, Würzner R (2006) Complement escape of human pathogenic bacteria by acquisition of complement regulators. Mol Immunol 43:31–44. https://doi.org/10.1016/j.molimm.2005.06.016

    Article  CAS  PubMed  Google Scholar 

  79. Meri T, Blom AM, Hartmann A, Lenk D, Meri S, Zipfel PF (2004) The hyphal and yeast forms of Candida albicans bind the complement regulator C4b binding protein. Infect Immun 72:6633–6641. https://doi.org/10.1128/IAI.72.11.6633-6641.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bernet J, Mullick J, Singh AK, Sahu A (2003) Viral mimicry of the complement system. J Biosci 28:249–264. https://doi.org/10.1007/BF02970145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shao S, Sun X, Chen Y, Zhan B, Zhu X (2019) Complement evasion: an effective strategy that parasites utilize to survive in the host. Front Microbiol 10:532. https://doi.org/10.3389/fmicb.2019.00532

    Article  PubMed  PubMed Central  Google Scholar 

  82. Meri T, Amdahl H, Lehtinen MJ, Hyvärinen S, McDowell JV, Bhattacharjee A, Meri S, Marconi R, Goldman A, Jokiranta TS (2013) Microbes bind complement inhibitor factor H via a Common site. PLoS Pathog 9:e1003308. https://doi.org/10.1371/journal.ppat.1003308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Madico G, Ngampasutadol J, Gulati S, Vogel U (2007) Factor H binding and function in sialylated pathogenic neisseriae is influenced by gonococcal, but not meningococcal, porin. J Immunol 178:4489–4497. https://doi.org/10.4049/jimmunol.178.7.4489

    Article  CAS  PubMed  Google Scholar 

  84. Seib KL, Scarselli M, Comanducci M, Toneatto D, Masignani V (2015) Neisseria meningitidis factor H binding protein fHbp: a key virulence factor and vaccine antigen. Expert Rev Vaccines 14:841–859. https://doi.org/10.1586/14760584.2015.1016915

    Article  CAS  PubMed  Google Scholar 

  85. Walter L, Sürth V, Röttgerding F, Zipfel PF, Fritz-Wolf K, Kraiczy P (2019) Elucidating the immune evasion mechanisms of Borrelia mayonii, the causative agent of Lyme disease. Front Immunol 26:2722. https://doi.org/10.3389/fimmu.2019.02722

    Article  Google Scholar 

  86. Tegels BK, Oliver LD Jr, Miller DP, Marconi RT (2018) Plasminogen binding and degradation by Treponema denticola: identification of the plasminogen binding interface on the FhbB protein. Mol Oral Microbiol 33:249–256. https://doi.org/10.1111/omi.12221

    Article  CAS  PubMed  Google Scholar 

  87. Barbosa AS, Isaac L (2018) Complement immune evasion by spirochetes. Curr Top Microbiol Immunol 415:215–238. https://doi.org/10.1007/82_2017_47

    Article  CAS  PubMed  Google Scholar 

  88. Xia X, Qin W, Zhu H, Wang X, Jiang J, Hu J (2019) How Streptococcus suis serotype 2 attempts to avoid attack by host immune defenses. J Microbiol Immunol Infect 52:516–525. https://doi.org/10.1016/j.jmii.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  89. Herbert AP, Makou E, Chen ZA, Kerr H (2015) Complement evasion mediated by enhancement of captured factor H: implications for protection of self-surfaces from complement. J Immunol 195:4986–4998. https://doi.org/10.4049/jimmunol.1501388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pathak A, Bergstrand J, Sender V, Spelmink L, Aschtgen MS, Muschiol S, Widengren J, Henriques-Normark B (2018) Factor H binding proteins protect division septa on encapsulated Streptococcus pneumoniae against complement C3b deposition and amplification. Nat Commun 9:3398. https://doi.org/10.1038/s41467-018-05494-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dave S, Carmicle S, Hammerschmidt S, Pangburn MK, McDaniel LS (2004) Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human secretory IgA and factor H. J Immunol 173:471–477. https://doi.org/10.4049/jimmunol.173.1.471

    Article  CAS  PubMed  Google Scholar 

  92. Jozsi M, Tortajada A, Uzonyi B, Goicoechea de Jorge E, Rodriguez de Cardoba S (2015) Factor H-related proteins determine complement-activating surfaces. Trends Immunol 36:374–384. https://doi.org/10.1016/j.it.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  93. Hebecker M, Jozsi M (2012) Factor H-related protein 4 activates complement by serving as a platform for the assembly of alternative pathway C3 convertase via its interaction with C3b protein. J Biol Chem 287:19528–19536. https://doi.org/10.1074/jbc.M112.364471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Caesar JJ, Lavender H, Ward PN, Exley RM, Eaton J, Chittock E, Malik TH, Goicoechea de Jorge E, Pickering MC, Tang CM, Lea SM (2014) Competition between antagonistic complement factors for a single protein on N. meningitidis rules disease susceptibility. eLife 3:e04008. https://doi.org/10.7554/eLife.04008

    Article  PubMed Central  Google Scholar 

  95. Abdul-Aziz M, Tsolaki AG, Kouser L, Carroll MV, Al-Ahdal MN, Sim RB, Kishore U (2016) Complement factor H interferes with Mycobacterium bovis BCG entry into macrophages and modulates the pro-inflammatory cytokine response. Immunobiology 221:944–952. https://doi.org/10.1016/j.imbio.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  96. Jarva H, Ram S, Vogel U, Blom AM, Meri S (2018) Binding of the complement inhibitor C4bp to serogroup B Neisseria meningitidis. J Immunol 174:6299–6307. https://doi.org/10.4049/jimmunol.174.10.6299

    Article  Google Scholar 

  97. Blom AM, Zadura AF, Villoutreix BO, Dahlback B (1999) Positively charged amino acids at the interface between α-chain CCP-1 and CCP-2 of C4BP are required for regulation of Classical C3 convertase. Mol Immunol 37:445–453. https://doi.org/10.1016/S0161-5890(00)00059-6

    Article  Google Scholar 

  98. Persson J, Beall B, Linse S, Lindahl G (2006) Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein. PLoS Pathog 2:e47. https://doi.org/10.1371/journal.ppat.0020047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Blom AM, Berggard K, Webb JH, Lindahl G, Villoutreix BO, Dahlback B (2000) Human C4b-binding protein has overlapping, but not identical, binding sites for C4b and streptococcal M proteins. J Immunol 164:5328–5336. https://doi.org/10.4049/jimmunol.164.10.5328

    Article  CAS  PubMed  Google Scholar 

  100. Akesson P, Cooney J, Kishimoto F, Bjorck L (1990) Protein H—a novel IgG binding bacterial protein. Mol Immunol 27:523–531. https://doi.org/10.1016/0161-5890(90)90071-7

    Article  CAS  PubMed  Google Scholar 

  101. Ermert D, Laabei M, Weckel A, Mörgelin M, Lundqvist M, Björck L, Ram S, Linse S, Blom AM (2019) The molecular basis of human IgG-mediated enhancement of C4b-binding protein recruitment to Group A Streptococcus. Front Immunol 10:1230. https://doi.org/10.3389/fimmu.2019.01230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ermert D, Weckel A, Magda M, Mörgelin M, Shaughnessy J, Rice PA, Björck L, Ram S, Blom AM (2018) Human IgG increases virulence of Streptococcus pyogenes through complement evasion. J Immunol 200:3495–3505. https://doi.org/10.4049/jimmunol.1800090

    Article  CAS  PubMed  Google Scholar 

  103. Agarwal V, Hammerschmidt S, Malm S, Bergmann S, Riesback K, Blom AM (2012) Enolase of Streptococcus pneumoniae binds human complement inhibitor C4b binding protein and contributes to complement evasion. J Immunol 189:3575–3584. https://doi.org/10.4049/jimmunol.1102934

    Article  CAS  PubMed  Google Scholar 

  104. de Gouw D, de Jonge MI, Hermans PWM, Wessels H, Zomer A, Berends A, Pratt C, Berbers GA, Mooi FA, Diavatopoulos DA (2014) Proteomics-identified Bvg-activated autotransporters protect against Bordetella pertussis in a mouse model. PLoS ONE 9:e105011. https://doi.org/10.1371/journal.pone.0105011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, Voorhorst M (2014) Complement is activated by IgG hexamers assembled at the cell surface. Science 343:1260–1263. https://doi.org/10.1126/science.1248943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. DeDent AC, McAdow M, Schneewind O (2007) Distribution of protein A on the surface of Staphylococcus aureus. J Bacteriol 189:4473–4484. https://doi.org/10.1128/JB.00227-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315. https://doi.org/10.1146/annurev.micro.50.1.285

    Article  CAS  PubMed  Google Scholar 

  108. Moayeri M, Leppla SH, Vrentas C, Pomerantsev AP, Liu S (2015) Anthrax pathogenesis. Annu Rev Microbiol 69:185–208. https://doi.org/10.1146/annurev-micro-091014-104523

    Article  CAS  PubMed  Google Scholar 

  109. Hovingh ES, van den Broek B, Jongerius I (2016) Hijacking complement regulatory proteins for bacterial immune evasion. Front Microbiol 7:2004. https://doi.org/10.3389/fmicb.2016.02004

    Article  PubMed  PubMed Central  Google Scholar 

  110. Agarwal S, Vasudhev S, DeOliveira RB, Ram S (2014) Inhibition of the classical pathway of complement by meningococcal capsular polysaccharides. J Immunol 193:1855–1863. https://doi.org/10.4049/jimmunol.1303177

    Article  CAS  PubMed  Google Scholar 

  111. Sahly H, Keisari Y, Ofek I (2009) Manno(rhamno)biose-containing capsular polysaccharides of Klebsiella pneumoniae enhance opsono-stimulation of human polymorphonuclear leukocytes. J Innate Immun 1:136–144. https://doi.org/10.1159/000154812

    Article  CAS  PubMed  Google Scholar 

  112. Steimle A, Autenrieth IB, Frick JS (2016) Structure and function: lipid A modifications in commensals and pathogens. Int J Med Microbiol 306:290–301. https://doi.org/10.1016/j.ijmm.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  113. O’Hara AM, Moran AP, Wurzner R, Orren A (2001) Complement-mediated lipopolysaccharide release and outer membrane damage in Escherichia coli J5: requirement for C9. Immunology 102:365–372. https://doi.org/10.1046/j.1365-2567.2001.01198.x

    Article  PubMed  PubMed Central  Google Scholar 

  114. Doorduijn DJ, Rooijakkers SH, van Schaik W, Bardoel BW (2016) Complement resistance mechanisms of Klebsiella pneumonias. Immunobiology 221:1102–1109. https://doi.org/10.1016/j.imbio.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  115. Hartmann S, Hofsteenge J (2000) Properdin, the positive regulator of complement, is highly C-Mannosylated. J Biol Chem 275:28569–28574. https://doi.org/10.1074/jbc.M001732200

    Article  CAS  PubMed  Google Scholar 

  116. Kemper C, Hourcade DE (2008) Properdin: new roles in pattern recognition and target clearance. Mol Immunol 45:4048–4056. https://doi.org/10.1016/j.molimm.2008.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Garcia BL, Zwarthoff SA, Rooijakkers SH, Geisbrecht BV (2016) Novel evasion mechanisms of the classical complement pathway. J Immunol 197:2051–2060. https://doi.org/10.4049/jimmunol.1600863

    Article  CAS  PubMed  Google Scholar 

  118. Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH (2011) Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186:6445–6453. https://doi.org/10.4049/jimmunol.1002948

    Article  CAS  PubMed  Google Scholar 

  119. Lynskey NN, Reglinski M, Calay D, Siggins MK, Mason JC, Botto M, Sriskandan S (2017) Multi-functional mechanisms of immune evasion by streptococcal complement inhibitor C5a peptidase. PLoS Pathog 13:e1006493. https://doi.org/10.1371/journal.ppat.1006493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schenkein HA, Fletcher HM, Bodnar M, Macrina FL (1995) Increased opsonization of a prtH-defective mutant of Porphyromonas gingivalis W83 is caused by reduced degradation of complement-derived opsonins. J Immunol 154:5331–5337

    CAS  PubMed  Google Scholar 

  121. Bhattacharya S, Ploplis VA, Castellino FJ (2012) Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol. https://doi.org/10.1155/2012/482096

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kraiczy P, Stevenson B (2013) Complement regulator-acquiring surface proteins of Borrelia burgdorferi: structure, function and regulation of gene expression. Ticks Tick Borne Dis 4:26–34. https://doi.org/10.1016/j.ttbdis.2012.10.039

    Article  PubMed  Google Scholar 

  123. Tracy KE, Baumgarth N (2017) Borrelia burgdorferi manipulates innate and adaptive immunity to establish persistence in rodent reservoir hosts. Front Immunol 8:116. https://doi.org/10.3389/fimmu.2017.0011

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hart T, Nguyen NTT, Nowak NA, Zhang F, Linhardt RJ, Diuk-Wasser M, Ram S, Kraiczy P, Lin TP (2018) Polymorphic factor H-binding activity of CspA protects Lyme borrelia from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS Pathog 14:e1007106. https://doi.org/10.1371/journal.ppat.1007106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mastellos DC, Ricklin D, Lambris JD (2019) Clinical promise of next generation complement therapeutics. Nat Rev Drug Discov 18:707–729. https://doi.org/10.1038/s41573-019-0031-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zelek WM, Xie L, Morgan BP, Harris CL (2019) Compendium of current complement therapeutics. Mol Immunol 114:341–352. https://doi.org/10.1016/j.molimm.2019.07.030

    Article  CAS  PubMed  Google Scholar 

  127. Laarman A, Milder F, van Strijp J, Rooijakkers S (2010) Complement inhibition by gram-positive pathogens: molecular mechanisms and therapeutic implications. J Mol Med (Berl) 88:115–120. https://doi.org/10.1007/s00109-009-0572-y

    Article  CAS  Google Scholar 

  128. Shaughnessy J, Vu DM, Punjabi R, Serra-Pladevall J, De Oliveira RB, Granoff DM, Ram S (2014) Fusion protein comprising factor H domains 6 and 7 and human IgG1 Fc as an antibacterial immunotherapeutic. Clin Vaccine Immunol 21:1452–1459. https://doi.org/10.1128/CVI.00444-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wong SM, Shaughnessy J, Ram S, Akerley BJ (2016) Defining the binding region in Factor H to develop a therapeutic Factor H-Fc fusion protein against non-typeable Haemophilus influenzae. Front Cell Infect Microbiol 6:40. https://doi.org/10.3389/fcimb.2016.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ram S, Shaughnessy J, DeOliveira RB, Lewis LA (2016) Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: lessons from the pathogenic Neisseriae. Immunobiology 221:1110–1123. https://doi.org/10.1016/j.imbio.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang YI, Back CR, Grawert MA, Wahld AA, Denton H, Kildani R, Paulin J, Worner K, Kaiser W, Svergun DI, Sartbaeva Watts AG, Marchbank KJ, van der Elsen JMH (2019) Utilization of Staphylococcal immune evasion protein Sbi as a novel vaccine adjuvant. Front Immunol 9:3139. https://doi.org/10.3389/fimmu.2018.03139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Marr N, Shah NR, Lee R, Kim EJ, Fernandez RC (2011) Bordetella pertussis autotransporter Vag8 binds human C1 esterase inhibitor and confers serum resistance. PLoS ONE 6:e20585. https://doi.org/10.1371/journal.pone.0020585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Socié G, Caby-Tosi MP, Marantz JL, Cole A, Bedrosian AL, Gasteyger C, Mujeebuddin A, Hillmen P, Vande Walle J, Haller H (2019) Eculizumab in paroxysmal nocturnal haemoglobinuria and atypical haemolytic uraemic syndrome: 10-year pharmacovigilance analysis. Br J Haematol 185:297–310. https://doi.org/10.1111/bjh.15790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pietrocola G, Nobile G, Rindi S, Speziale P (2017) Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front Cell Infect Microbiol 7:166. https://doi.org/10.3389/fcimb.2017.00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim HK, Thammavongsa V, Schneewind O, Missiakas D (2012) Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol 15:92–99. https://doi.org/10.1016/j.mib.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  136. Sharma S, Bhatnagar R, Gaur D (2020) Bacillus anthracis poly-γ-d-glutamate capsule inhibits opsonic phagocytosis by impeding complement activation. Front Immunol 11:462. https://doi.org/10.3389/fimmu.2020.00462

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to acknowledge the funding support of the Department of Biotechnology (BSL-3 facility), Department of Science & Technology (FIST & PURSE) and University Grant Commission (UPE II) to RB and DG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Gaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Bhatnagar, R. & Gaur, D. Complement Evasion Strategies of Human Pathogenic Bacteria. Indian J Microbiol 60, 283–296 (2020). https://doi.org/10.1007/s12088-020-00872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-020-00872-9

Keywords

Navigation