Skip to main content
Log in

Gelatin Binding Proteins in Reproductive Physiology

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In order to advance the assisted reproductive technologies used in animals and human beings, it is important to accumulate basic informations about underlying molecular mechanisms that shape the biological processes of reproduction. From within seminal plasma, proteins perform a wide variety of distinct functions that regulate major reproductive events such as fertilization. The ability of such proteins to bind and interact with different antagonistic ions and biomolecules such as polysaccharides, lipids, and other proteins present in the male and female reproductive tract define these capabilities. Over the last two decades, extensive work has been undertaken in an attempt to define the role of seminal plasma proteins, of which, Gelatin binding proteins (GBPs) represent a large family. GBPs comprise of known group of Bovine seminal plasma (BSP) protein family, matrix metallo proteinases (MMP 2 and MMP 9) and fibronectin, which have been widely studied. The presence of a type II repeat is a characteristic feature of GBPs, which is similar in structure to the fibronectin type II domain (fn2), which has ability to bind multiple ligands including gelatin, glycosaminoglycans, choline phospholipids, and lipoproteins. Two fn2 domains are present within the BSP protein family, while, three fn2 domains are found in gelatinases (MMP-2 and MMP9), and ELSPBP1 (Epididymosomes Transfer Epididymal Sperm Binding Protein 1) contains four long fn2 domains. For the most part BSP proteins are exclusively expressed in seminal vesicles although mBSPH1, mBSPH2 and hBSPH1 are all expressed in the epididymis. The expression of gelatinases has been demonstrated in several organs and tissues such as the prostate, testis, epididymis, ovary, human placenta, cervix and endometrial wall. This review intends to bring current updates on the role of GBPs in reproductive physiology to light, which may act as basis for future studies on GBPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rodriguez-Martinez H, Kvist U, Ernerudh J, Sanz L, Calvete JJ (2011) Seminal plasma proteins: what role do they play? Am J Reprod Immunol 66:11–22. doi:10.1111/j.1600-0897.2011.01033.x

    Article  PubMed  Google Scholar 

  2. Liu Y, Wang DK, Chen LM (2012) The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod 5:86–99. doi:10.1095/biolreprod.111.096826

    Google Scholar 

  3. Björndahl L, Kvist U (2010) Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod 16:23–29. doi:10.1093/molehr/gap099

    Article  PubMed  Google Scholar 

  4. Batruch I, Smith CR, Mullen BJ, Grober E, Lo KC, Diamandis EP, Jarvi KA (2012) Analysis of seminal plasma from patients with non-obstructive azoospermia and identification of candidate biomarkers of male infertility. J Proteom Res 11:1503–1511. doi:10.1021/pr200812p

    Article  CAS  Google Scholar 

  5. Plante G, Prud’homme B, Fan J, Lafleur M, Manjunath P (2016) Evolution and function of mammalian binder of sperm proteins. Cell Tissue Res 363:105–127. doi:10.1007/s00441-015-2289-2

    Article  CAS  PubMed  Google Scholar 

  6. Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827. doi:10.1016/j.foodhyd.2011.02.007

    Article  Google Scholar 

  7. Manjunath P, Lefebvre J, Jois PS, Fan J, Wright MW (2009) New nomenclature for mammalian BSP genes. Biol Reprod 80:394–397. doi:10.1095/biolreprod.108.074088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serrano E, Martínez AB, Arruga D, Pérez-Pé R, Sánchez-Ferrer Á, Muiño-Blanco T, Cebrián-Pérez JA (2010) New Insights into the phylogeny and gene context analysis of binder of sperm proteins (BSPs). PLoS ONE 9:e0137008. doi:10.1371/journal.pone.0137008

    Google Scholar 

  9. Plante G, Fan J, Manjunath P (2014) Murine binder of Sperm homolog 2 (BSPH2): the black sheep of the BSP superfamily. Biol Reprod 90:1–12. doi:10.1095/biolreprod.113.114272

    Article  Google Scholar 

  10. Manjunath P (2012) new insights into the understanding of the mechanism of sperm protection by extender components. Anim Reprod 9:809–815

    Google Scholar 

  11. Plante G, Manjunath P (2015) Epididymal binder of sperm genes and proteins: what do we know a decade later? Andrology 3:817–824. doi:10.1111/andr.12089

    Article  CAS  PubMed  Google Scholar 

  12. Pipan MZ, Kosec M, Mrkun J, Zrimsek P (2010) Gelatinases in boar seminal plasma and their relation to semen indicators. Acta vet brno 79:491–496. doi:10.2754/avb201079030491

    Article  CAS  Google Scholar 

  13. Gurupriya VS, Roy SC, Dhama K, Gopinath D, Rekha V, Aswathi PB, John JK, Gopalakrishnan A (2014) Proteases and proteases inhibitors of semen–a review. Adv Anim Vet Sci 2:447–456. doi:10.14737/journal.aavs/2014/2.8.447.456

    Article  Google Scholar 

  14. Saengsoi W, Shia WY, Shyu CL, Wu JT, Warinrak C, Lee WM, Cheng FP (2011) Detection of matrix metalloproteinase (MMP)-2 and MMP-9 in canine seminal plasma. Anim Reprod Sci 127:114–119. doi:10.1016/j.anireprosci.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  15. Gurupriya VS, Divyashree BC, Roy SC (2014) Cryogenic changes in proteases and antiprotease activities of buffalo (Bubalus bubalis) and cattle (Bos taurus) semen. Theriogenology 81:396–402. doi:10.1016/j.theriogenology.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  16. Souza CE, Rego JP, Lobo CH, Oliveira JT, Nogueira FC, Domont GB, Fioramonte M, Gozzo FC, Moreno FB, Monteiro-Moreira AC, Figueiredo JR, Moura AA (2012) Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. J Proteom 75:4436–4456. doi:10.1016/j.jprot.2012.05.039

    Article  CAS  Google Scholar 

  17. Portela VM, Veiga A, Price CA (2009) Regulation of MMP2 and MMP9 metalloproteinases by FSH and growth factors in bovine granulosa cells. Genet Mol Biol 32:516–520. doi:10.1590/S1415-47572009005000048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Orief YI, Alabd MM, Alkasar YS, Koritam AG, Deghedy A (2013) The role of matrix metalloproteinase-2 in the culture media in embryo implantation rate in normogonadotrophic cases undergoing ICSI. Middle East Fertil Soc J 18:278–283. doi:10.1016/j.mefs.2012.11.001

    Article  Google Scholar 

  19. Churg A, Zhou S, Wright JL (2012) Series “matrix metalloproteinases in lung health and disease”: matrix metalloproteinases in COPD. Eur Respir J 39:197–209. doi:10.1183/09031936.00121611

    Article  CAS  PubMed  Google Scholar 

  20. Shiomi T, Lemaître V, D’Armiento J, Okada Y (2010) Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int 60:477–496. doi:10.1111/j.1440-.2010.02547.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dua JW, Xub KY, Fangc LY, Qid XL (2012) Detection and analysis of MMP-2 and MMP-9 in seminal plasma. J Men Health 9:216–219. doi:10.1016/j.jomh.2012.07.002

    Article  Google Scholar 

  22. Frenette G, Girouard J, D’Amours O, Allard N, Tessier L, Sullivan R (2012) Characterization of two distinct populations of epididymosomes collected in the intraluminal compartment of the bovine cauda epididymis1. Biol Reprod 87:1–11. doi:10.1095/biolreprod.109.082438

    Article  Google Scholar 

  23. D’Amours O, Frenette G, Fortier M, Leclerc P, Sullivan R (2010) Proteomic comparison of detergent-extracted sperm proteins from bulls with different fertility indexes. Reproduction 139:545–556. doi:10.1530/REP-09-0375

    Article  PubMed  Google Scholar 

  24. D’Amours O, Frenette G, Bordeleau LJ, Allard N, Leclerc P, Blondin P, Sullivan R (2012) Epididymosomes transfer epididymal sperm binding protein 1 (ELSPBP1) to dead spermatozoa during epididymal transit in bovine. Biol Reprod 18:87–94. doi:10.1095/biolreprod.112.100990

    Google Scholar 

  25. Sullivan R (2015) Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J Androl 7:726–729. doi:10.4103/1008-682X.155255

    Google Scholar 

  26. Sahin E, Petrunkina AM, Ekhlasi-Hundrieser M, Hettel C, Waberski D, Harrison RA, Topfer-Petersen E (2009) Fibronectin type II-module proteins in the bovine genital tract and their putative role in cell volume control during sperm maturation. Reprod Fertil Dev 21:479–488. doi:10.1071/RD08209

    Article  CAS  PubMed  Google Scholar 

  27. D’Amours O, Bordeleau LJ, Frenette G, Blondin P, Leclerc P, Sullivan R (2012) Binder of sperm 1 and epididymal sperm binding protein 1 are associated with different bull sperm subpopulations. Reproduction 143:759–771. doi:10.1530/REP-11-0392

    Article  PubMed  Google Scholar 

  28. Srivastava N, Jerome A, Srivastava SK, Ghosh SK, Kumar A (2013) Bovine seminal PDC-109 protein: an overview of biochemical and functional properties. Anim Reprod Sci 138:1–13. doi:10.1016/j.anireprosci.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  29. Plante G, Therien I, Manjunath P (2012) Characterization of recombinant murine binder of sperm protein homolog 1 and its role in capacitation. Biol Reprod 87:1–11. doi:10.1095/biolreprod.111.096644

    Article  Google Scholar 

  30. Yin Z, Sada AA, Reslan OM, Narula N, Khalil RA (2012) Increased MMPs expression and decreased contraction in the rat myometrium during pregnancy and in response to prolonged stretch and sex hormones. Am J Physiol Endocrinol Metab 303:55–70. doi:10.1152/ajpendo.00553.2011

    Article  Google Scholar 

  31. Roy SC, Ghosh J (2010) Dynamic in vivo changes in the activities of gelatinases, matrix metalloproteinases (MMPs), and tissue inhibitor of metalloproteinases (TIMPs) in buffalo (Bubalus bubalis) uterine luminal fluid during estrous cycle and early pregnancy. Mol Reprod Dev 77:944–953. doi:10.1002/mrd.21240

    Article  CAS  PubMed  Google Scholar 

  32. Ulbrich SE, Meyer SU, Zitta K, Hiendleder S, Sinowatz F, Bauersachs S, Büttner M, Fröhlich T, Arnold GJ, Reichenbach HD, Wolf E, Meyer HH (2011) Bovine endometrial metallopeptidases MMP14 and MMP2 and the metallopeptidase inhibitor TIMP2 participate in maternal preparation of pregnancy. Mol Cell Endocrinol 332:48–57. doi:10.1016/j.mce.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  33. Henriet P, Gaide Chevronnay HP, Marbaix E (2012) The endocrine and paracrine control of menstruation. Mol Cell Endocrinol 358:197–207. doi:10.1016/j.mce.2011.07.042

    Article  CAS  PubMed  Google Scholar 

  34. Diaz PS, Solar PA, Juica NE, Orihuela PA, Cardenas H, Christodoulides M, Vargas R, Velasquez LA (2012) Differential expression of extracellular matrix components in the fallopian tubes throughout the menstrual cycle. Reprod Biol Endocrinol 16:10–56. doi:10.1186/1477-7827-10-56

    Google Scholar 

  35. Wang Q, Xu X, He B, Li Y, Chen X, Wang J (2013) A critical period of progesterone withdrawal precedes endometrial breakdown and shedding in mouse menstrual-like model. Hum Reprod 28:1670–1678. doi:10.1093/humrep/det052

    Article  CAS  PubMed  Google Scholar 

  36. Apichela S, Valz-Gianinet JN, Schuster S, Jimenez-Dıaz MA, Roldan-Olarte M, Miceli DC (2010) Lectin binding patterns and carbohydrate mediation of sperm binding to llama oviductal cells in vitro. Anim Reprod Sci 118:344–353. doi:10.1016/j.anireprosci.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  37. Defaus S, Aviles M, Andreu D, Gutierrez-Gallego R (2016) Identification of bovine sperm surface proteins involved in carbohydrate-mediated fertilization interactions. Mol Cell Proteom. doi:10.1074/mcp.M115.057703mcp.M115.057703

    Google Scholar 

  38. Tienthai P (2015) The porcine sperm reservoir in relation to the function of hyaluronan. J Reprod Dev 61:245–250. doi:10.1262/jrd.2015-006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coy P, García-Vázquez FA, Visconti PE, Avilés M (2012) Roles of the oviduct in mammalian fertilization. Reproduction 144:649–660. doi:10.1530/REP-12-0279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tecle E, Gagneux P (2015) Sugar-coated sperm: unraveling the functions of the mammalian sperm glycocalyx. Mol Reprod Dev 82:635–650. doi:10.1002/mrd.22500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lafleur M, Courtemanche L, Karlsson G, Edwards K, Schwartz JL, Manjunath P (2010) Bovine binder-of-sperm protein BSP1 promotes protrusion and nanotube formation from liposomes. Biochem Biophys Res Commun 399:406–411. doi:10.1016/j.bbrc.2010.07.088

    Article  CAS  PubMed  Google Scholar 

  42. Ardon F, Suarez SS (2013) Cryopreservation increases coating of bull sperm by seminal plasma binder of sperm proteins BSP1, BSP3, and BSP5. Reproduction 146:111–117. doi:10.1530/REP-12-0468

    Article  CAS  PubMed  Google Scholar 

  43. Hung PH, Suarez SS (2012) Alterations to the bull sperm surface proteins that bind sperm to oviductal epithelium. Biol Reprod 18:80–88. doi:10.1095/biolreprod.112.099721

    Google Scholar 

  44. Pons-Rejraji H, Bailey JL, Leclerc P (2009) Cryopreservation affects bovine sperm intracellular parameters associated with capacitation and acrosome exocytosis. Reprod Fertil Dev 21:525–537. doi:10.1071/RD07170

    Article  CAS  PubMed  Google Scholar 

  45. Blässe AK, Oldenhof H, Ekhlasi-Hundrieser M, Wolkers WF, Sieme H, Bollwein H (2012) Osmotic tolerance and intracellular ion concentrations of bovine sperm are affected by cryopreservation. Theriogenology 78:1312–1320. doi:10.1016/j.theriogenology.2012.05.029

    Article  PubMed  Google Scholar 

  46. Juyena NS, Stelletta C (2012) Seminal plasma: an essential attribute to spermatozoa. J Androl 33:536–551. doi:10.2164/jandrol.110.012583

    Article  PubMed  Google Scholar 

  47. Rovegno M, Feitosa WB, Rocha AM, Mendes CM, Visintin JA, D’Avila Assumpção ME (2013) Assessment of post-thawed ram sperm viability after incubation with seminal plasma. Cell Tissue Bank 14:333–339. doi:10.1007/s10561-012-9317-1

    Article  PubMed  Google Scholar 

  48. de Andrade AF, Zaffalon FG, Celeghini EC, Nascimento J, Bressan FF, Martins SM, de Arruda RP (2012) Post-thaw addition of seminal plasma reduces tyrosine phosphorylation on the surface of cryopreserved equine sperm, but does not reduce lipid peroxidation. Theriogenology 77:1866–1872. doi:10.1016/j.theriogenology.2012.01.003

    Article  PubMed  Google Scholar 

  49. Bernardini A, Hozbor F, Sanchez E, Fornés MW, Alberio RH, Cesari A (2011) Conserved ram seminal plasma proteins bind to the sperm membrane and repair cryopreservation damage. Theriogenology 76:436–447. doi:10.1016/j.theriogenology.2011.02.020

    Article  CAS  PubMed  Google Scholar 

  50. Mendoza N, Casao A, Pérez-Pé R, Cebrián-Pérez JA, Muiño-Blanco T (2013) New insights into the mechanisms of ram sperm protection by seminal plasma proteins. Biol Reprod 88:1–15. doi:10.1095/biolreprod.112.105650

    Article  Google Scholar 

  51. Vadnais ML, Roberts KP (2010) Effects of seminal plasma on cooling-induced capacitative changes in boar sperm. J Androl 28:416–422. doi:10.1071/RD09274

    Article  Google Scholar 

  52. Van Tilburg MF, Rodrigues MA, Moreira RA, Moreno FB, Monteiro-Moreira AC, Cândido MJ, Moura AA (2013) Membrane-associated proteins of ejaculated sperm from morada nova rams. Theriogenology 79:1247–1261. doi:10.1016/j.theriogenology.2013.03.013

    Article  PubMed  Google Scholar 

  53. Cho C (2012) Testicular and epididymal ADAMs: expression and function during fertilization. Nat Rev Urol 9:550–560. doi:10.1038/nrurol.2012.167

    Article  CAS  PubMed  Google Scholar 

  54. Warinrak C, Wu JT, Hsu WL, Liao JW, Chang SC, Cheng FP (2015) Expression of matrix metalloproteinases (MMP-2, MMP-9) and their inhibitors (TIMP-1, TIMP-2) in canine testis, epididymis and semen. Reprod Domest Anim 50:48–57. doi:10.1111/rda.12448

    Article  CAS  PubMed  Google Scholar 

  55. Moura AA, Souza CE, Stanley BA, Chapman DA, Killian GJ (2010) Proteomics of cauda epididymal fluid from mature Holstein bulls. J Proteom 73:2006–2020. doi:10.1016/j.jprot.2010.06.005

    Article  CAS  Google Scholar 

  56. Caballero J, Frenette G, Sullivan R (2010) Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int 2011:1–13. doi:10.4061/2011/757194

    Article  Google Scholar 

  57. Rodrigues MAM, Souzaa CEA, Martinsa JAM, Regoa JPA, Oliveirab JTA, Domontc G, Nogueirac FCS, Mouraa AA (2013) Seminal plasma proteins and their relationship with sperm motility in Santa Ines rams. Small Rumin Res 109:94–100. doi:10.1016/j.smallrumres.2012.07.032

    Article  Google Scholar 

  58. Al-Dossary AA, Strehler EE, Martin-Deleon PA (2013) Expression and secretion of plasma membrane Ca2 + -ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS ONE 8:e80181. doi:10.1371/journal.pone.0080181

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu YX, Liu XM, Nin LF, Shi L, Chen SR (2013) Serine protease and ovarian paracrine factors in regulation of ovulation. Front Biosci (Landmark Ed) 18:650–664. doi:10.2741/4128

    Article  CAS  Google Scholar 

  60. Kim SH, Kang CW, Min KS, Yoon JT (2014) Matrix metalloproteinases are important for follicular development in normal and miniature pigs. Biotechnol Lett 36:1187–1196. doi:10.1007/s10529-014-1474-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Deady LD, Shen W, Mosure SA, Spradling AC, Sun J (2015) Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila. PLoS Genet 19:1–15. doi:10.1371/journal.pgen.1004989

    Google Scholar 

  62. Basini G, Bussolati S, Baioni L, Grasselli F (2011) Gelatinases (MMP2 and MMP9) in swine antral follicle. BioFactors 37:117–120. doi:10.1002/biof.153

    Article  CAS  PubMed  Google Scholar 

  63. Vos MC, van der Wurff AA, Last JT, de Boed EA, Smeenk JM, van Kuppevelt TH, Massuger LF (2014) Immunohistochemical expression of MMP-14 and MMP-2, and MMP-2 activity during human ovarian follicular development. Reprod Biol Endocrinol 31:1–8. doi:10.1186/1477-7827-12-12

    Google Scholar 

  64. Baka S, Zourla K, Kouskouni E, Makrakis E, Demeridou S, Tzanakaki D, Hassiakos D, Creatsas G (2010) Matrix metalloproteinases 2 and 9 and their tissue inhibitors in the follicular fluid of patients with polycystic ovaries undergoing in vitro fertilization. In Vivo 24:293–296

    CAS  PubMed  Google Scholar 

  65. Laflamme BA, Wolfner MF (2013) Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev 80:80–101. doi:10.1002/mrd.22130

    Article  CAS  PubMed  Google Scholar 

  66. Yang WJ, Liu FC, Hsieh JS, Chen CH, Hsiao SY, Lin CS (2015) Matrix metalloproteinase 2 level in human follicular fluid is a reliable marker of human oocyte maturation in in vitro fertilization and intracytoplasmic sperm injection cycles. Reprod Biol Endocrinol 13:102. doi:10.1186/s12958-015-0099-8

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sankhala RS, Swamy MJ (2010) The major protein of bovine seminal plasma, PDC-109, is a molecular chaperone. Biochemistry 49:3908–3918. doi:10.1021/bi100051d

    Article  CAS  PubMed  Google Scholar 

  68. Silva JV, Yoon S, Domingues S, Guimarães S, Goltsev AV, da Cruz E, Silva EF, Mendes JF, da Cruz E, Silva OA, Fardilha M (2015) Amyloid precursor protein interaction network in human testis: sentinel proteins for male reproduction. BMC Bioinform 16:1–12. doi:10.1186/s12859-014-0432-9

    Article  Google Scholar 

  69. Sankhala RS, Kumar CS, Singh BP, Arangasamy A, Swamy MJ (2012) HSP-1/2, a major protein of equine seminal plasma, exhibits chaperone-like activity. Biochem Biophys Res Commun 427:18–23. doi:10.1016/j.bbrc.2012.08.120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Department of President’s Affairs (DOPA), Abu Dhabi, United Arab Emirates (UAE) for financial support and resources for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Tinson, A., Mulligan, B.P. et al. Gelatin Binding Proteins in Reproductive Physiology. Indian J Microbiol 56, 383–393 (2016). https://doi.org/10.1007/s12088-016-0618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0618-0

Keywords

Navigation