Skip to main content

Advertisement

Log in

Defining mycobacteria: Shared and specific genome features for different lifestyles

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of ‘mycobacterial’ gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific ‘virulence’ factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA and Rapp BA (2000) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 28:10–14

    Article  PubMed  CAS  Google Scholar 

  2. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA and Wheeler DL (2000) GenBank. Nucleic Acids Res 28:15–18

    Article  PubMed  CAS  Google Scholar 

  3. Cole ST (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  4. Garnier T et al. (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci 100:7877–7882

    Article  PubMed  CAS  Google Scholar 

  5. Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos Santos S, Duthoy S, Lacroix C, Garcia-Pelayo C, Inwald JK, Golby P, Garcia JN, Hewinson RG, Behr MA, Quail MA, Churcher C, Barrell BG, Parkhill J and Cole ST (2007). Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci 104:5596–5601

    Article  PubMed  CAS  Google Scholar 

  6. Cole ST et al. (2001) Massive gene decay in the leprosy bacillus” Nature 409:1007–1011

    Article  PubMed  CAS  Google Scholar 

  7. Stinear TP et al. (2007) Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 17:192–200

    Article  PubMed  CAS  Google Scholar 

  8. Li L et al. (2005) The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci 102:12344–12349

    Article  PubMed  CAS  Google Scholar 

  9. Nigou J, Gilleron M and Puzo G (2003) Lipoarabinomannans: from structure to biosynthesis. Biochimie 85: 153–166

    Article  PubMed  CAS  Google Scholar 

  10. Sutcliffe C (2000) Characterisation of a lipomannan lipoglycan from the mycolic acid containing actinomycete Dietzia maris. Antonie Van Leeuwenhoek 78:195–201

    Article  PubMed  CAS  Google Scholar 

  11. Flaherty C and Sutcliffe IC (1999). Identification of a lipoarabinomannan-like lipoglycan in Gordonia rubropertincta. Syst Appl Microbiol 22:530–533

    PubMed  CAS  Google Scholar 

  12. Ma Z, Zhang J and Kong F (2004) Facile synthesis of arabinomannose penta- and decasaccharide fragments of the lipoarabinomannan of the equine pathogen, Rhodococcus equi. Carbohydr Res 339:1761–1771

    Article  PubMed  CAS  Google Scholar 

  13. Flaherty C, Minnikin DE and Sutcliffe IC (1996) A chemotaxonomic study of the lipoglycans of Rhodococcus rhodnii N445 (NCIMB 11279). Zentralbl Bakteriol 285:11–19

    PubMed  CAS  Google Scholar 

  14. Gibson KJ, Gilleron M, Constant P, Brando T, Puzo G, Besra GS and Nigou J (2004) Tsukamurella paurometabola lipoglycan, a new lipoarabinomannan variant with pro-inflammatory activity. J Biol Chem 279:22973–22982

    Article  PubMed  CAS  Google Scholar 

  15. Pakkiri LS and Waechter CJ (2005) Dimannosyldiacylglycerol serves as a lipid anchor precursor in the assembly of the membrane-associated lipomannan in Micrococcus luteus. Glycobiology 15:291–302

    Article  PubMed  CAS  Google Scholar 

  16. Gibson KJ, Gilleron M, Constant P, Sichi B, Puzo G, Besra GS and Nigou J (2005) lipomannan variant with strong TLR-2-dependent pro-inflammatory activity in Saccharothrix aerocolonigenes. J Biol Chem 280:28347–28356

    Article  PubMed  CAS  Google Scholar 

  17. Gibson KJ, Gilleron M, Constant P, Puzo G, Nigou J and Besra GS (2003) Identification of a novel mannose-capped lipoarabinomannan from Amycolatopsis sulphurea. Biochem J 372:821–829

    Article  PubMed  CAS  Google Scholar 

  18. Daffe M, McNeil M and Brennan PJ (1993) Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp. Carbohydr Res 249: 383–398

    Article  PubMed  CAS  Google Scholar 

  19. Sutcliffe IC. 1998 Cell envelope composition and organisation in the genus Rhodococcus. Antonie Van Leeuwenhoek 74:49–58

    Article  PubMed  CAS  Google Scholar 

  20. Tropis M, Lemassu A, Vincent V and Daffe M (2005) Structural elucidation of the predominant motifs of the major cell wall arabinogalactan antigens from the borderline species Tsukamurella paurometabolum and Mycobacterium fallax. Glycobiology 15:677–686

    Article  PubMed  CAS  Google Scholar 

  21. Barry CE 3rd, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, and Yuan Y (1998) Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res. 37:143–179

    Article  PubMed  CAS  Google Scholar 

  22. Weinstock GM (2000) Genomics and bacterial pathogenesis. Emerg Infect Dis 6:496–504

    Article  PubMed  CAS  Google Scholar 

  23. Guilhot C, Gicquel B and Martín C (1992) Temperaturesensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol Lett 77:181–186

    Article  PubMed  CAS  Google Scholar 

  24. Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C, Mc-Adam RA, Bloom BR, Hatfull GF and Jacobs WR Jr (1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci 94:10961–10966

    Article  PubMed  CAS  Google Scholar 

  25. Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, Broman KW and Bishai WR (2003) A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci 100: 7213–7218

    Article  PubMed  CAS  Google Scholar 

  26. Camacho LR, Ensergueix D, Perez E, Gicquel B, and Guilhot C (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267

    Article  PubMed  CAS  Google Scholar 

  27. Cox JS, Chen B, McNeil M and Jacobs WR Jr (1999). Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83

    Article  PubMed  CAS  Google Scholar 

  28. Sassetti CM, Boyd DH and Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci 98:12712–12717

    Article  PubMed  CAS  Google Scholar 

  29. Sassetti CM, Boyd DH and Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    Article  PubMed  CAS  Google Scholar 

  30. Sassetti CM and Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci 100:12989–12994

    Article  PubMed  CAS  Google Scholar 

  31. Heifets L. 2004 Mycobacterial infections caused by nontuberculous mycobacteria. Semin Respir Crit Care Med 25: 283–295

    Article  PubMed  Google Scholar 

  32. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, Maiden MC, Nesme X, Rosselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC and Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  PubMed  CAS  Google Scholar 

  33. Snel B, Huynen MA and Dutilh BE (2005) Genome trees and the nature of genome evolution. Annu Rev Microbiol 59:191–209

    Article  PubMed  CAS  Google Scholar 

  34. Adékambi T and Drancourt M (2004) Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol 54:2095–2105

    Article  PubMed  CAS  Google Scholar 

  35. Devulder G, Pérouse de Montclos M and Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55:293–302

    Article  PubMed  CAS  Google Scholar 

  36. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D and Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci 99:3684–3689

    Article  PubMed  CAS  Google Scholar 

  37. Marsollier L, Aubry J, Coutanceau E, André JP, Small PL, Milon G, Legras P, Guadagnini S, Carbonnelle B and Cole ST (2005) Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide toxin, mycolactone. Cell Microbiol 7:935–943

    Article  PubMed  CAS  Google Scholar 

  38. Marsollier L, Sévérin T, Aubry J, Merritt RW, Saint André JP, Legras P, Manceau AL, Chauty A, Carbonnelle B and Cole ST (2004) Aquatic snails, passive hosts of Mycobacterium ulcerans. Appl Environ Microbiol 70:6296–6298

    Article  PubMed  CAS  Google Scholar 

  39. Marsollier L, Stinear T, Aubry J, Saint André JP, Robert R, Legras P, Manceau AL, Audrain C, Bourdon S, Kouakou H and Carbonnelle B (2004) Aquatic plants stimulate the growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and harbor these bacteria in the environment. Appl Environ Microbiol 70:1097–1103

    Article  PubMed  CAS  Google Scholar 

  40. Bannantine JP, Zhang Q, Li LL and Kapur V (2003) Genomic homogeneity between Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis belies their divergent growth rates. BMC Microbiol 3:10

    Article  PubMed  Google Scholar 

  41. Vissa VD and Brennan PJ (2001) The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol. 2:REVIEWS1023

  42. Gómez-Valero L, Rocha EP, Latorre A and Silva FJ (2007) Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction. Genome Res 17:1178–1185

    Article  PubMed  CAS  Google Scholar 

  43. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND and Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  PubMed  CAS  Google Scholar 

  44. Banu S, Honoré N, Saint-Joanis B, Philpott D, Prévost MC and Cole ST (2002) Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol 44:9–19

    Article  PubMed  CAS  Google Scholar 

  45. Ramakrishnan L, Federspiel NA and Falkow S (2000) Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288:1436–1439

    Article  PubMed  CAS  Google Scholar 

  46. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32(Web Server issue):W327–W331

    Article  PubMed  CAS  Google Scholar 

  47. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki C, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  48. Voskuil MI, Schnappinger D, Rutherford R and Liu Y and Schoolnik GK (2004) Regulation of the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis 84:256–262

    Article  PubMed  CAS  Google Scholar 

  49. Brennan MJ and Delogu G (2002) The PE multigene family: a ‘molecular mantra’ for mycobacteria. Trends Microbiol 10: 246–249

    Article  PubMed  CAS  Google Scholar 

  50. Delogu G, Sanguinetti M, Pusceddu C, Bua A, Brennan MJ, Zanetti S and Fadda G. (2006). PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissues. Microbes Infect 8:2061–2067

    Article  PubMed  CAS  Google Scholar 

  51. Delogu G and Brennan MJ (2001) Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis. Infect Immun 69:5606–5611

    Article  PubMed  CAS  Google Scholar 

  52. Kumar A, Chandolia A, Chaudhry U, Brahmachari V and Bose M (2005) Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling. FEMS Immunol Med Microbiol 43:185–195

    Article  PubMed  CAS  Google Scholar 

  53. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ and Bitter W (2007) Type VII secretion—mycobacteria show the way. Nat Rev Microbiol 5:883–891

    Article  PubMed  CAS  Google Scholar 

  54. Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, Sherman DR, Bloom BR, and Rubin EJ (2005) Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci 102:10676–10681

    Article  PubMed  CAS  Google Scholar 

  55. Gey van Pittius NC, Sampson SL, Lee H, Kim Y, van Helden PD and Warren RM. 2006 Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6:95

    Article  PubMed  CAS  Google Scholar 

  56. Onwueme KC, Vos CJ, Zurita J, Ferreras JA and Quadri LE 2005 The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 44:259–302

    Article  PubMed  CAS  Google Scholar 

  57. DiGiuseppe Champion PA and Cox JS (2007) Protein secretion systems in Mycobacteria. Cell Microbiol 9: 1376–1384

    Article  PubMed  CAS  Google Scholar 

  58. Casali N and Riley LW (2007) A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 8:60

    Article  PubMed  CAS  Google Scholar 

  59. Marri PR, Bannantine JP and Golding GB (2006) Comparative genomics of metabolic pathways in Mycobacterium species: gene duplication, gene decay and lateral gene transfer. FEMS Microbiol Rev 30:906–925

    Article  PubMed  CAS  Google Scholar 

  60. Russell DG (2003) Phagosomes, fatty acids and tuberculosis. Nat Cell Biol 5:776–778

    Article  PubMed  CAS  Google Scholar 

  61. Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW and Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci 104:1947–1952

    Article  PubMed  CAS  Google Scholar 

  62. Kato-Maeda M, Rhee JT, Gingeras TR, Salamon H, Drenkow J, Smittipat N and Small PM (2001) Comparing genomes within the species Mycobacterium tuberculosis. Genome Res 11:547–554

    Article  PubMed  CAS  Google Scholar 

  63. Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, Hannan M, Goguet de la Salmoniere YO, Aman K, Kato-Maeda M and Small PM (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci 101: 4865–4870

    Article  PubMed  CAS  Google Scholar 

  64. Ren H, Dover LG, Islam ST, Alexander DC, Chen JM, Besra GS and Liu J (2007) Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol 63:1345–1359

    Article  PubMed  CAS  Google Scholar 

  65. Rousseau C, Sirakova TD, Dubey VS, Bordat Y, Kolattukudy PE, Gicquel B and Jackson M (2003) Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis. Microbiology 149:1837–1847

    Article  PubMed  CAS  Google Scholar 

  66. Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs Jr WR, Venter JC and Fraser CM (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490

    Article  PubMed  CAS  Google Scholar 

  67. Viana-Niero C, de Haas PE, van Soolingen D and Leao SC (2004) Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiology 150:967–978

    Article  PubMed  CAS  Google Scholar 

  68. Yang Z, Yang D, Kong Y, Zhang L, Marrs CF, Foxman B, Bates JH, Wilson F and Cave MD 2005 Clinical relevance of Mycobacterium tuberculosis plcD gene mutations. Am J Respir Crit Care Med 171:1436–1442

    Article  PubMed  Google Scholar 

  69. van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, Qing HZ, Enkhsaikan D, Nymadawa P and van Embden JD (1995) Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 33:3234–3238

    PubMed  Google Scholar 

  70. European Concerted Action on New Generation Genetic Markers and Techniques for the Epidemiology and Control of Tuberculosis (2006) Beijing/W genotype Mycobacterium tuberculosis and drug resistance. Emerg Infect Dis 12: 736–743

    Google Scholar 

  71. Abebe F and Bjune G (2006) The emergence of Beijing family genotypes of Mycobacterium tuberculosis and low-level protection by bacille Calmette-Guérin (BCG) vaccines: is there a link? Clin Exp Immunol 145:389–397

    Article  PubMed  CAS  Google Scholar 

  72. Bifani PJ, Mathema B, Kurepina NE and Kreiswirth BN (2002) Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 10:45–52

    Article  PubMed  CAS  Google Scholar 

  73. Kong Y, Cave MD, Zhang L, Foxman B, Marrs CF, Bates JH and Yang ZH (2007) Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: Insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates. J Clin Microbiol 45:409–414

    Article  PubMed  CAS  Google Scholar 

  74. Dormans J, Burger M, Aguilar D, Hernandez-Pando R, Kremer K, Roholl P, Arend SM and van Soolingen D (2004) Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol 137:460–468

    Article  PubMed  CAS  Google Scholar 

  75. Turenne CY, Wallace R Jr and Behr MA (2007) Mycobacterium avium in the postgenomic era. Clin Microbiol Rev 20: 205–229

    Article  PubMed  CAS  Google Scholar 

  76. Semret M, Turenne CY, de Haas P, Collins DM and Behr MA (2006) Differentiating host-associated variants of Mycobacterium avium by PCR for detection of large sequence polymorphisms. J Clin Microbiol 44:881–887

    Article  PubMed  CAS  Google Scholar 

  77. Motiwala AS, Li L, Kapur V and Sreevatsan S (2006) Current understanding of the genetic diversity of Mycobacterium avium subsp. paratuberculosis. Microbes Infect 8:1406–1418

    Article  PubMed  CAS  Google Scholar 

  78. Danelishvili L, Wu M, Stang B, Harriff M, Cirillo SL, Cirillo JD, Bildfell R, Arbogast B and Bermudez LE (2007) Identification of Mycobacterium avium pathogenicity island important for macrophage and amoeba infection. Proc Natl Acad Sci 104:11038–11043

    Article  PubMed  CAS  Google Scholar 

  79. Wren BW (2003) The yersiniae — a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol 1:55–64

    Article  PubMed  CAS  Google Scholar 

  80. Kim HS, Schell MA, Yu Y, Ulrich RL, Sarria SH, Nierman WC and DeShazer D (2005) Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6:174

    Article  PubMed  CAS  Google Scholar 

  81. Pérez E, Constant P, Lemassu A, Laval F, Daffé M and Guilhot C (2004) Characterization of three glycosyltransferases involved in the biosynthesis of the phenolic glycolipid antigens from the Mycobacterium tuberculosis complex. J Biol Chem 279:42574–42583

    Article  PubMed  CAS  Google Scholar 

  82. Pérez E, Constant P, Laval F, Lemassu A, Lanéelle MA, Daffé M and Guilhot C (2004) Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J Biol Chem 279: 42584–42592

    Article  PubMed  CAS  Google Scholar 

  83. Cho SN, Yanagihara DL, Hunter SW, Gelber RH and Brennan PJ (1983) Serological specificity of phenolic glycolipid I from Mycobacterium leprae and use in serodiagnosis of leprosy. Infect Immun 41:1077–1083

    PubMed  CAS  Google Scholar 

  84. Mwanatambwe M, Yajima M, Etuaful S, Fukunishi Y, Suzuki K, Asiedu K, Yamada N and Asanao G (2002) Phenolic glycolipid-1 (PGL-1) in Buruli ulcer lesions. First demonstration by immuno-histochemistry. Int J Lepr Other Mycobact Dis 70:201–205

    PubMed  Google Scholar 

  85. Daffé M, Varnerot A and Lévy-Frébault VV (1992) The phenolic mycoside of Mycobacterium ulcerans: structure and taxonomic implications. J Gen Microbiol 138:131–137

    PubMed  Google Scholar 

  86. Käser M, Rondini S, Naegeli M, Stinear T, Portaels F, Certa U and Pluschke G (2007) Evolution of two distinct phylogenetic lineages of the emerging human pathogen Mycobacterium ulcerans. BMC Evol Biol 7:177

    Article  PubMed  CAS  Google Scholar 

  87. Brennan PJ and Vissa VD (2001) Genomic evidence for the retention of the essential mycobacterial cell wall in the otherwise defective Mycobacterium leprae. Lepr Rev 72: 415–428

    PubMed  CAS  Google Scholar 

  88. Eiglmeier K, Parkhill J, Honoré N, Garnier T, Tekaia F, Telenti A, Klatser P, James KD, Thomson NR, Wheeler PR, Churcher C, Harris D, Mungall K, Barrell BG and Cole ST (2001) The decaying genome of Mycobacterium leprae. Lepr Rev 72:387–398

    PubMed  CAS  Google Scholar 

  89. Bailey AM, Mahapatra S, Brennan PJ and Crick DC (2002) Identification, cloning, purification, and enzymatic characterization of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase. Glycobiology 12:813–820

    Article  PubMed  CAS  Google Scholar 

  90. Dhiman RK, Schaeffer ML, Bailey AM, Testa CA, Scherman H and Crick DC (2005) 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin. J Bacteriol 187:8395–8402

    Article  PubMed  CAS  Google Scholar 

  91. Eoh H, Brown AC, Buetow L, Hunter WN, Parish T, Kaur D, Brennan PJ and Crick DC (2007) Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase: potential for drug development. J Bacteriol 189:8922–8927

    Article  PubMed  CAS  Google Scholar 

  92. Buetow L, Brown AC, Parish T and Hunter WN (2007) The structure of Mycobacteria 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, an essential enzyme, provides a platform for drug discovery. BMC Struct Biol 7:68

    Article  PubMed  CAS  Google Scholar 

  93. Schulbach MC, Brennan PJ and Crick DC (2000) Identification of a short (C15) chain Z-isoprenyl diphosphate synthase and a homologous long (C50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis. J Biol Chem 275:22876–22881

    Article  PubMed  CAS  Google Scholar 

  94. Dhiman RK, Schulbach MC, Mahapatra S, Baulard AR, Vissa V, Brennan PJ and Crick DC (2004) Identification of a novel class of omega,E,E-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Lipid Res 45: 1140–1147

    Article  PubMed  CAS  Google Scholar 

  95. De Smet KA, Kempsell KE, Gallagher A, Duncan K and Young DB (1999) Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145 (Pt 11): 3177–3184

    PubMed  Google Scholar 

  96. Mahapatra S, Crick DC and Brennan PJ (2000) Comparison of the UDP-N-acetylmuramate:L-alanine ligase enzymes from Mycobacterium tuberculosis and Mycobacterium leprae. J Bacteriol 182:6827–6830

    Article  PubMed  CAS  Google Scholar 

  97. Mahapatra S, Yagi T, Belisle JT, Espinosa BJ, Hill PJ, McNeil MR, Brennan PJ and Crick DC (2005) Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol 187:2747–2757

    Article  PubMed  CAS  Google Scholar 

  98. Bhakta S and Basu J (2002) Overexpression, purification and biochemical characterization of a class A high-molecular-mass penicillin-binding protein (PBP), PBP1* and its soluble derivative from Mycobacterium tuberculosis. Biochem J 361:635–669

    Article  PubMed  CAS  Google Scholar 

  99. Ma Y, Stern RJ, Scherman MS, Vissa VD, Yan W, Jones VC, Zhang F, Franzblau SG, Lewis WH and McNeil MR (2001) Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob Agents Chemother 45: 1407–1416

    Article  PubMed  CAS  Google Scholar 

  100. Weston A, Stern RJ, Lee RE, Nassau PM, Monsey D, Martin SL, Scherman MS, Besra GS, Duncan K and McNeil MR (1997) Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tuber Lung Dis 78: 123–131

    Article  PubMed  CAS  Google Scholar 

  101. Sanders DA, Staines AG, McMahon SA, McNeil MR, Whitfield C and Naismith JH (2001) UDP-galactopyranose mutase has a novel structure and mechanism. Nat Struct Biol. 8:858–863.

    Article  PubMed  CAS  Google Scholar 

  102. Mikusová K, Huang H, Yagi T, Holsters M, Vereecke D, D’Haeze W, Scherman MS, Brennan PJ, McNeil MR and Crick DC (2005) Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J Bacteriol 187:8020–8025

    Article  PubMed  CAS  Google Scholar 

  103. Mills JA, Motichka K, Jucker M, Wu HP, Uhlik BC, Stern RJ, Scherman MS, Vissa VD, Pan F, Kundu M, Ma YF and McNeil M (2004) Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. J Biol Chem 279:43540–43546

    Article  PubMed  CAS  Google Scholar 

  104. Kremer L, Dover LG, Morehouse C, Hitchin P, Everett M, Morris HR, Dell A, Brennan PJ, McNeil MR, Flaherty C, Duncan K and Besra GS (2001) Galactan biosynthesis in Mycobacterium tuberculosis. Identification of a bifunctional UDP-galactofuranosyltransferase. J Biol Chem 276: 26430–26440

    Article  PubMed  CAS  Google Scholar 

  105. Mikusova K, Belanova M, Kordulakova J, Honda K, Mc-Neil MR, Mahapatra S, Crick DC and Brennan PJ (2006) Identification of a novel galactosyl transferase involved in biosynthesis of the mycobacterial cell wall. J Bacteriol 188: 6592–6598

    Article  PubMed  CAS  Google Scholar 

  106. Alderwick LJ, Seidel M, Sahm H, Besra GS and Eggeling L (2006) Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J Biol Chem 281:15653–15661

    Article  PubMed  CAS  Google Scholar 

  107. Belanger AE, Besra GS, Ford ME, Mikusová K, Belisle JT, Brennan PJ and Inamine JM (1996) The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci 93:11919–11924

    Article  PubMed  CAS  Google Scholar 

  108. Seidel M, Alderwick LJ, Birch HL, Sahm H, Eggeling L and Besra GS (2007) Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 282:14729–14740

    Article  PubMed  CAS  Google Scholar 

  109. Fernandes ND and Kolattukudy PE (1996) Cloning, sequencing and characterization of a fatty acid synthaseencoding gene from Mycobacterium tuberculosis var. bovis BCG. Gene 170:95–99

    Article  PubMed  CAS  Google Scholar 

  110. Daniel J, Oh TJ, Lee CM and Kolattukudy PE (2007) AccD6, a member of the Fas II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A carboxylase in Mycobacterium tuberculosis. J Bacteriol 189:911–917

    Article  PubMed  CAS  Google Scholar 

  111. Mdluli K, Slayden RA, Zhu Y, Ramaswamy S, Pan X, Mead D, Crane DD, Musser JM and Barry CE 3rd. (1998) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280: 1607–1610

    Article  PubMed  CAS  Google Scholar 

  112. Kremer L, Nampoothiri KM, Lesjean S, Dover LG, Graham S, Betts J, Brennan PJ, Minnikin DE, Locht C and Besra GS (2001) Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA:AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. J Biol Chem 276:27967–27974

    Article  PubMed  CAS  Google Scholar 

  113. Choi KH, Kremer L, Besra GS and Rock CO (2000) Identification and substrate specificity of beta -ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J Biol Chem 275:28201–28207

    PubMed  CAS  Google Scholar 

  114. Schaeffer ML, Agnihotri G, Volker C, Kallender H, Brennan PJ and Lonsdale JT (2001) Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 276:47029–47037

    Article  PubMed  CAS  Google Scholar 

  115. Marrakchi H, Ducasse S, Labesse G, Montrozier H, Margeat E, Emorine L, Charpentier X, Daffé M and Quémard A (2002) MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology 148:951–960

    PubMed  CAS  Google Scholar 

  116. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G and Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227–230

    Article  PubMed  CAS  Google Scholar 

  117. Yuan Y, Lee RE, Besra GS, Belisle JT and Barry C.E 3rd (1995) Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci 6630–6634

  118. Glickman MS, Cahill SM and Jacobs WR Jr. 2001. The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J Biol Chem 276:2228–2233

    Article  PubMed  CAS  Google Scholar 

  119. Yuan Y and Barry CE 3rd (1996) A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci 93:12828–12833

    Article  PubMed  CAS  Google Scholar 

  120. Glickman MS (2003) The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the alpha-mycolic acid. J Biol Chem 278:7844–7849

    Article  PubMed  CAS  Google Scholar 

  121. Laval F, Haites R, Movahedzadeh F, Lemassu A, Wong CY, Stoker N, Billman-Jacobe H and Daffé M (2008) Investigating the function of the putative mycolic acid methyltransferase UmaA: divergence between the Mycobacterium smegmatis and Mycobacterium tuberculosis proteins. J Biol Chem 283:1419–1427

    Article  PubMed  CAS  Google Scholar 

  122. Glickman MS, Cox JS and Jacobs WR Jr (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5:717–727

    Article  PubMed  CAS  Google Scholar 

  123. Dyer DH, Lyle KS, Rayment I and Fox BG (2005) X-ray structure of putative acyl-ACP desaturase DesA2 from Mycobacterium tuberculosis H37Rv. Protein Sci 14: 1508–1517

    Article  PubMed  CAS  Google Scholar 

  124. Portevin D, de Sousa-D’Auria C, Montrozier H, Houssin C, Stella A, Lanéelle MA, Bardou F, Guilhot C and Daffé M (2005) The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 280:8862–8874

    Article  PubMed  CAS  Google Scholar 

  125. Lin TW, Melgar MM, Kurth D, Swamidass SJ, Purdon J, Tseng T, Gago G, Baldi P, Gramajo H and Tsai SC (2006) Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc Natl Acad Sci 103: 3072–3077

    Article  PubMed  CAS  Google Scholar 

  126. Portevin D, De Sousa-D’Auria C, Houssin C, Grimaldi C, Chami M, Daffé M, and Guilhot C (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci 101:314–319.

    Article  PubMed  CAS  Google Scholar 

  127. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ and Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422

    Article  PubMed  CAS  Google Scholar 

  128. Azad AK, Sirakova TD, Rogers LM and Kolattukudy PE (1996) Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc Natl Acad Sci. 93: 4787–4792

    Article  PubMed  CAS  Google Scholar 

  129. Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffe M and Guilhot C (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854

    Article  PubMed  CAS  Google Scholar 

  130. Stadthagen G, Korduláková J, Griffin R, Constant P, Bottová I, Barilone N, Gicquel B, Daffé M and Jackson M (2005) p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis. J Biol Chem 280:40699–40706

    Article  PubMed  CAS  Google Scholar 

  131. Azad AK, Sirakova TD, Fernandes ND and Kolattukudy PE (1997) Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem 272:16741–16745

    Article  PubMed  CAS  Google Scholar 

  132. Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M and Chakrabarti P (2002) Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 367:279–285

    Article  PubMed  CAS  Google Scholar 

  133. Onwueme KC, Ferreras JA, Buglino J, Lima CD and Quadri LE (2004) Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc Natl Acad Sci 101:4608–4613

    Article  PubMed  CAS  Google Scholar 

  134. Constant P, Perez E, Malaga W, Lanéelle MA, Saurel O, Daffé M and Guilhot C. (2002) Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 277: 38148–38158

    Article  PubMed  CAS  Google Scholar 

  135. Hotter GS, Wards BJ, Mouat P, Besra GS, Gomes J, Singh M, Bassett S, Kawakami P, Wheeler PR, de Lisle GW and Collins DM (2006) Transposon mutagenesis of Mb0100 at the ppe1-nrp locus in Mycobacterium bovis disrupts phthiocerol dimycocerosate (PDIM) and glycosylphenol-PDIM biosynthesis, producing an avirulent strain with vaccine properties at least equal to those of M. bovis BCG. J Bacteriol 187:2267–2277

    Article  CAS  Google Scholar 

  136. Sulzenbacher G, Canaan S, Bordat Y, Neyrolles O, Stadthagen G, Roig-Zamboni V, Rauzier J, Maurin D, Laval F, Daffé M, Cambillau C, Gicquel B, Bourne Y and Jackson M (2006) LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J 25:1436–1444

    Article  PubMed  CAS  Google Scholar 

  137. Siméone R, Constant P, Guilhot C, Daffé M and Chalut C (2007) Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis. J Bacteriol 189:4597–4602

    Article  PubMed  CAS  Google Scholar 

  138. Siméone R, Constant P, Malaga W, Guilhot C, Daffé M and Chalut C (2007) Molecular dissection of the biosynthetic relationship between phthiocerol and phthiodiolone dimycocerosates and their critical role in the virulence and permeability of Mycobacterium tuberculosis. FEBS J 274: 1957–1969

    Article  PubMed  CAS  Google Scholar 

  139. Sirakova TD, Dubey VS, Cynamon MH and Kolattukudy PE (2003) Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis. J Bacteriol 185:2999–3008

    Article  PubMed  CAS  Google Scholar 

  140. Sirakova TD, Dubey VS, Kim HJ, Cynamon MH and Kolattukudy PE (2003) The largest open reading frame (pks12) in the Mycobacterium tuberculosis genomes involved in pathogenesis and dimycocerosyl phthiocerol synthesis. Infect Immun 71:3794–3801

    Article  PubMed  CAS  Google Scholar 

  141. Dubey VS, Sirakova TD, Cynamon MH and Kolattukudy PE (2003) Biochemical function of msl5 (pks8 plus pks17) in Mycobacterium tuberculosis H37Rv: biosynthesis of monomethyl branched unsaturated fatty acids. J Bacteriol 185:4620–4625

    Article  PubMed  CAS  Google Scholar 

  142. Gurcha SS, Baulard AR, Kremer L, Locht C, Moody DB, Muhlecker W, Costello CE, Crick DC, Brennan PJ and Besra GS. 2002. Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochem J 365:441–450

    Article  PubMed  CAS  Google Scholar 

  143. Jackson M, Crick DC and Brennan PJ (2000) Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem 275:30092–30099

    Article  PubMed  CAS  Google Scholar 

  144. Korduláková J, Gilleron M, Puzo G, Brennan PJ, Gicquel B, Mikusová K and Jackson M. 2003. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of mycobacterium species. J Biol Chem 278:36285–36295

    Article  PubMed  CAS  Google Scholar 

  145. Korduláková J, Gilleron M, Mikusova K, Puzo G, Brennan PJ, Gicquel B and Jackson M. 2002. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J Biol Chem 277:31335–31344

    Article  PubMed  CAS  Google Scholar 

  146. Schaeffer ML, Khoo KH, Besra GS, Chatterjee D, Brennan PJ, Belisle JT and Inamine JM (1999) The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J Biol Chem 274:31625–31631

    Article  PubMed  CAS  Google Scholar 

  147. Tatituri RV, Illarionov PA, Dover LG, Nigou J, Gilleron M, Hitchen P, Krumbach K, Morris HR, Spencer N, Dell A, Eggeling L and Besra GS (2007) Inactivation of Corynebacterium glutamicum NCgl0452 and the role of MgtA in the biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis. J Biol Chem 282:4561–4572

    Article  PubMed  CAS  Google Scholar 

  148. Kremer L, Gurcha SS, Bifani P, Hitchen PG, Baulard A, Morris HR, Dell A, Brennan PJ and Besra GS (2002) Characterization of a putative alpha-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochem J 363:437–447

    Article  PubMed  CAS  Google Scholar 

  149. Morita YS, Sena CB, Waller RF, Kurokawa K, Sernee MF, Nakatani F, Haites RE, Billman-Jacobe H, McConville MJ, Maeda Y and Kinoshita T (2006) PimE is a polyprenolphosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem 281:25143–25155

    Article  PubMed  CAS  Google Scholar 

  150. Kaur D, Berg S, Dinadayala P, Gicquel B, Chatterjee D, McNeil MR, Vissa VD, Crick DC, Jackson M and Brennan PJ (2006) Biosynthesis of mycobacterial lipoarabinomannan: role of a branching mannosyltransferase. Proc Natl Acad Sci 103:13664–13669

    Article  PubMed  CAS  Google Scholar 

  151. Zhang N, Torrelles JB, McNeil MR, Escuyer VE, Khoo KH, Brennan PJ and Chatterjee D (2003) The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Mol Microbiol 50:69–76

    Article  PubMed  CAS  Google Scholar 

  152. Jeevarajah D, Patterson JH, McConville MJ and Billman-Jacobe H (2002) Modification of glycopeptidolipids by an O-methyltransferase of Mycobacterium smegmatis. 148: 3079–3087

    CAS  Google Scholar 

  153. Jeevarajah D, Patterson JH, Taig E, Sargeant T, McConville MJ and Billman-Jacobe H (2004) Methylation of GPLs in Mycobacterium smegmatis and Mycobacterium avium. J Bacteriol 186:6792–6799

    Article  PubMed  CAS  Google Scholar 

  154. Patterson JH, McConville MJ, Haites RE, Coppel RL and Billman-Jacobe H (2000) Identification of a methyltransferase from Mycobacterium smegmatis involved in glycopeptidolipid synthesis. J Biol Chem 275:24900–24906

    Article  PubMed  CAS  Google Scholar 

  155. Miyamoto Y, Mukai T, Nakata N, Maeda Y, Kai M, Naka T, Yano I and Makino M (2006) Identification and characterization of the genes involved in glycosylation pathways of mycobacterial glycopeptidolipid biosynthesis. J Bacteriol 188:86–95

    Article  PubMed  CAS  Google Scholar 

  156. Recht J and Kolter R (2001) Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol. 183:5718–5724

    Article  PubMed  CAS  Google Scholar 

  157. Billman-Jacobe H, McConville MJ, Haites RE, Kovacevic S and Coppel RL (1999) Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis. Mol Microbiol 33:1244–1253

    Article  PubMed  CAS  Google Scholar 

  158. Sonden B, Kocincova D, Deshayes C, Euphrasie D, Rhayat L, Laval F, Frehel C, Daffe M, Etienne G and Reyrat JM (2005) Gap, a mycobacterial specific integral membrane protein, is required for glycolipid transport to the cell surface. Mol. Microbiol 58:426–440

    Article  PubMed  CAS  Google Scholar 

  159. Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D and Gokhale RS (2004) Enzymatic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428:441–445

    Article  PubMed  CAS  Google Scholar 

  160. Deshayes C, Laval F, Montrozier H, Daffe M, Etienne G and Reyrat JM (2005) A Glycosyltransferase Involved in Biosynthesis of Triglycosylated Glycopeptidolipids in Mycobacterium smegmatis: Impact on Surface Properties. J. Bacteriol 187:7283–7291

    Article  PubMed  CAS  Google Scholar 

  161. Miyamoto Y, Mukai T, Nakata N, Maeda Y, Kai M, Naka T, Yano I and Makino M (2006) Identification and characterization of the genes involved in glycosylation pathways of mycobacterial glycopeptidolipid biosynthesis. J. Bacteriol. 188:86–95

    Article  PubMed  CAS  Google Scholar 

  162. Sirakova TD, Thirumala AK, Dubey VS, Sprecher H and Kolattukudy PE (2001) The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem 276:16833–16839

    Article  PubMed  CAS  Google Scholar 

  163. Converse SE, Mougous JD, Leavell MD, Leary JA, Bertozzi CR and Cox JS (2003) MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci 100:6121–6126

    Article  PubMed  CAS  Google Scholar 

  164. Kumar P, Schelle MW, Jain M, Lin FL, Petzold CJ, Leavell MD, Leary JA, Cox JS and Bertozzi CR (2007) PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc Natl Acad Sci 104:11221–11226

    Article  PubMed  CAS  Google Scholar 

  165. Mougous JD, Petzold CJ, Senaratne RH, Lee DH, Akey DL, Lin FL, Munchel SE, Pratt MR, Riley LW, Leary JA, Berger JM and Bertozzi CR (2004) Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol 11: 721–729

    Article  PubMed  CAS  Google Scholar 

  166. Tzvetkov, M Klopprogge C, Zelder O and Liebl W (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149:1659–1673

    Article  PubMed  CAS  Google Scholar 

  167. Wolf A, Kramer R and Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    Article  PubMed  CAS  Google Scholar 

  168. Woodruff PJ, Carlson BL, Siridechadilok B, Pratt MR, Williams SJ, and Bertozzi CR (2004) Trehalose is required for growth of Mycobacterium smegmatis. J Biol Chem 279: 28835–28843

    Article  PubMed  CAS  Google Scholar 

  169. Spencer JS, Dockrell HM, Kim HJ, Marques MA, Williams DL, Martins MV, Martins ML, Lima MC, Sarno EN, Pereira GM, Matos H, Fonseca LS, Sampaio EP, Ottenhoff TH, Geluk A, Cho SN, Stoker NG, Cole ST, Brennan PJ and Pessolani MC (2005) Identification of specific proteins and peptides in Mycobacterium leprae suitable for the selective diagnosis of leprosy. J Immunol 175: 7930–7938

    PubMed  CAS  Google Scholar 

  170. Aráoz R, Honoré N, Cho S, Kim JP, Cho SN, Monot M, Demangel C, Brennan PJ and Cole ST (2006) Antigen discovery: a postgenomic approach to leprosy diagnosis. Infect Immun 74:175–82

    Article  PubMed  CAS  Google Scholar 

  171. Geluk A, Klein MR, Franken KL, van Meijgaarden KE, Wieles B, Pereira KC, Bührer-Sékula S, Klatser PR, Brennan PJ, Spencer JS, Williams DL, Pessolani MC, Sampaio EP and Ottenhoff TH (2005) Postgenomic approach to identify novel Mycobacterium leprae antigens with potential to improve immunodiagnosis of infection. Infect Immun 73:5636–5644

    Article  PubMed  CAS  Google Scholar 

  172. Duthie MS, Goto W, Ireton GC, Reece ST, Cardoso LP, Martelli CM, Stefani MM, Nakatani M, de Jesus RC, Netto EM, Balagon MV, Tan E, Gelber RH, Maeda Y, Makino M, Hoft D and Reed SG (2007) Use of protein antigens for early serological diagnosis of leprosy. Clin Vaccine Immunol 14:1400–1408

    Article  PubMed  CAS  Google Scholar 

  173. Titgemeyer F, Amon J, Parche S, Mahfoud M, Bail J, Schlicht M, Rehm N, Hillmann D, Stephan J, Walter B, Burkovski A and Niederweis M (2007) A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol 189:5903–5915

    Article  PubMed  CAS  Google Scholar 

  174. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varalakshmi D. Vissa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vissa, V.D., Sakamuri, R.M., Li, W. et al. Defining mycobacteria: Shared and specific genome features for different lifestyles. Indian J Microbiol 49, 11–47 (2009). https://doi.org/10.1007/s12088-009-0006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-009-0006-0

Keywords

Navigation