Skip to main content
Log in

Sensitivity analysis of continuous-time models for ecological and evolutionary theories

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 30 October 2015

Abstract

Sensitivity analyses are of paramount importance in ecological and evolutionary theories, but their application to continuous time models has been virtually ignored from these fields. We present a simple and general method that makes this analysis possible for any model specified by a system of ordinary differential equations, using the direct method from mathematical theory. The resulting analysis may be used to study the effect of parameter perturbation on the whole trajectories of the state variables as well as for deriving the sensitivity of composite metrics such as the population growth rate. We also present methods for analyzing the sensitivity of discrete events within a continuous-time framework, such as the age at maturation, where timing may be affected by the perturbation. These methods are applied to a model for the energetics of individual growth, reproduction, and mortality. The method is versatile and can be applied to study transient as well as asymptotic dynamics, and its application may benefit many fields of ecology and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen T, Carstensen J, Hernandez-Garcia E, Duarte CM (2009) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24(1):49–57

    Article  PubMed  Google Scholar 

  • Benton TG, Grant A (1999) Elasticity analysis as an important tool in evolutionary and population ecology. Trends Ecol Evol 14(12):467–471

    Article  PubMed  Google Scholar 

  • Buzby M, Neckels D, Antolin MF, Estep D (2008) Analysis of the sensitivity properties of a model of vector-borne bubonic plague. J Roy Soc Interface 5(26):1099–1107

    Article  Google Scholar 

  • Cacuci DG (1981) Sensitivity theory for nonlinear systems. i. nonlinear functional analysis approach. J Math Phys 22(12):2794–2802

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models. Wiley Online Library

  • Caswell H (2007) Sensitivity analysis of transient population dynamics. Ecol Lett 10(1):1–15

    Article  PubMed  Google Scholar 

  • Caswell H (2008) Perturbation analysis of nonlinear matrix population models. Demogr Res 18(3):59–116

    Article  Google Scholar 

  • Caswell H (2009) Sensitivity and elasticity of density-dependent population models. J Differ Equ Appl 15(4):349–369

    Article  Google Scholar 

  • Chaniotis D, Pai M, Hiskens I (2001) Sensitivity analysis of differential-algebraic systems using the GMRES method-application to power systems. IEEE, vol 3, pp 117–120

  • Day T, Rowe L (2002) Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. Am Nat 159(4):338–350

    Article  PubMed  Google Scholar 

  • De Roos AM (2008) Demographic analysis of continuous-time life-history models. Ecol lett 11(1):1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • De Roos AM, Persson L (2003) Competition in size-structured populations: mechanisms inducing cohort formation and population cycles. Theor Popul Biol 63(1):1–16

    Article  PubMed  Google Scholar 

  • Dickinson RP, Gelinas RJ (1976) Sensitivity analysis of ordinary differential equation systemsa direct method. J Comput Phys 21(2):123–143

    Article  Google Scholar 

  • Dunker AM, Yarwood G, Ortmann JP, Wilson GM (2002) The decoupled direct method for sensitivity analysis in a three-dimensional air quality model implementation, accuracy, and efficiency. Environ Sci Technol 36(13):2965–2976

    Article  CAS  PubMed  Google Scholar 

  • Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: applying a new structured population model. Ecology 81(3):694–708

    Article  Google Scholar 

  • Ernande B, Dieckmann U, Heino M (2004) Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. P Roy Soc Lond B Bio 271(1537):415–423

    Article  Google Scholar 

  • Geritz SA, Metz JAJ, Kisdi É, Meszéna G (1997) Dynamics of adaptation and evolutionary branching. Phys Rev Lett 78(10):2024

    Article  CAS  Google Scholar 

  • Geritz SA, Kisdi É, Meszéna G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12(1):35–57

    Article  Google Scholar 

  • Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, Gunderson LH, Levinson BM, Palmer MA, Paerl HW, Peterson GD (2006) Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9(1):1–13

    Article  Google Scholar 

  • Gurney W, Nisbet RM (1998) Ecological dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Hazel W, Smock R, Johnson M (1990) A polygenic model for the evolution and maintenance of conditional strategies. P Roy Soc Lond B Bio 242(1305):181–187

    Article  CAS  Google Scholar 

  • Hazel W, Smock R, Lively CM (2004) The ecological genetics of conditional strategies. Am Nat 163(6):888–900

    Article  PubMed  Google Scholar 

  • Justus J (2006) Loop analysis and qualitative modeling: limitations and merits. Biol Philos 21(5):647–666

    Article  Google Scholar 

  • Kendall BE, Briggs CJ, Murdoch WW, Turchin P, Ellner SP, McCauley E, Nisbet RM, Wood SN (1999) Why do populations cycle? a synthesis of statistical and mechanistic modeling approaches. Ecology 80(6):1789–1805

    Article  Google Scholar 

  • Klausmeier CA (2008) Floquet theory: a useful tool for understanding nonequilibrium dynamics. Theor Ecol 1(3):153–161

    Article  Google Scholar 

  • Koda M, Dogru AH, Seinfeld JH (1979) Sensitivity analysis of partial differential equations with application to reaction and diffusion processes. J Comput Phys 30(2):259–282

    Article  CAS  Google Scholar 

  • Larter R (1983) Sensitivity analysis of autonomous oscillators, separation of secular terms and determination of structural stability. J Phys Chem-US 87(16):3114–3121

    Article  CAS  Google Scholar 

  • Levins R (1974) The qualitative analysis of partially specified systems. Ann N Y Acad Sci 231:123138

    Article  Google Scholar 

  • Li S, Petzold LR (2003) Solution adapted mesh refinement and sensitivity analysis for parabolic partial differential equation systems. In: Large-scale PDE-constrained optimization. Springer, Berlin Heidelberg New York, pp 117–132

  • Lu P, Yue H (2012) Developing objective sensitivity analysis of periodic systems: case studies of biological oscillators. Acta Autom Sin 38(7):1065–1073

    Article  Google Scholar 

  • McCauley E, Nelson WA, Nisbet RM (2008) Small-amplitude cycles emerge from stage-structured interactions in Daphnia-algal systems. Nature 455(7217):1240–1243

    Article  CAS  PubMed  Google Scholar 

  • Metcalf CJE, Pavard S (2007) Why evolutionary biologists should be demographers. Trends Ecol Evol 22(4):205–212

    Article  PubMed  Google Scholar 

  • Nisbet RM, McCauley E, Gurney WSC, Murdoch WW, Wood SN (2004) Formulating and testing a partially specified dynamic energy budget model. Ecology 85(11):3132–3139

    Article  Google Scholar 

  • Nisbet RM, McCauley E, Johnson LR (2010) Dynamic energy budget theory and population ecology: lessons from Daphnia. Philos T Roy Soc B 365(1557):3541–3552

    Article  Google Scholar 

  • Perumal TM, Gunawan R (2011) Understanding dynamics using sensitivity analysis: caveat and solution. BMC Syst Biol 5(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  • Petzold L, Li S, Cao Y, Serban R (2006) Sensitivity analysis of differential-algebraic equations and partial differential equations. Comput Chem Eng 30(10):1553–1559

    Article  CAS  Google Scholar 

  • Rihan FA (2003) Sensitivity analysis for dynamic systems with time-lags. J Comput Appl Math 151(2):445–462

    Article  Google Scholar 

  • Roff DA (1996) The evolution of threshold traits in animals. Q Rev Biol:3–35

  • Roff DA (2002) Life history evolution, vol 7. Sinauer Associates Sunderland

  • Shiraishi F, Tomita T, Iwata M, Berrada AA, Hirayama H (2009) A reliable taylor series-based computational method for the calculation of dynamic sensitivities in large-scale metabolic reaction systems: algorithm and software evaluation. Math Biosci 222(2):73–85

    Article  CAS  PubMed  Google Scholar 

  • Stewart J (2007) Calculus: early transcendentals, 6th edn. Cengage Learning, Belmont

    Google Scholar 

  • Tavener S, Mikucki M, Field SG, Antolin MF (2011) Transient sensitivity analysis for nonlinear population models. Methods Ecol Evol 2(5):560–575

    Article  Google Scholar 

  • Tolsma JE, Barton PI (2002) Hidden discontinuities and parametric sensitivity calculations. SIAM J Sci Comput 23(6):1861–1874

    Article  Google Scholar 

  • Tomovic R, Vukobratovic M (1972) General sensitivity theory. American Elsevier, New York

    Google Scholar 

  • Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Probl Eng 1(1):71–105

    Article  Google Scholar 

  • Verdy A, Caswell H (2008) Sensitivity analysis of reactive ecological dynamics. Bull Math Biol 70(6):1634–1659

    Article  PubMed  Google Scholar 

  • Wilkins AK, Tidor B, White J, Barton PI (2009) Sensitivity analysis for oscillating dynamical systems. SIAM J Sci Comput 31(4):2706–2732

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu WH, Wang FS, Chang MS (2008) Dynamic sensitivity analysis of biological systems. BMC Bioinf 9(Suppl 12):S17

    Article  Google Scholar 

  • Zi Z (2011) Sensitivity analysis approaches applied to systems biology models. IET Syst Biol 5(6):336–346

    Article  CAS  PubMed  Google Scholar 

  • ZivariPiran H, Enright WH (2009) Accurate first-order sensitivity analysis for delay differential equations: Part i: The forward approach. preprint, Department of Computer Science, University of Toronto

Download references

Acknowledgments

We are grateful to Andre de Roos and Hal Caswell for thorough comments on the manuscript, and to Ottar Bjornstad and Jeremy Fox for useful discussions. This work was supported by Ed McCauley’s NSERC Accelerator Award and Operating Grant, Canada Research Chair, and grants from the Water Research Institute. Romain Richard received additional support from a Pacific Institute for the Mathematical Sciences IGTC fellowship in mathematical biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Richard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, R., Casas, J. & McCauley, E. Sensitivity analysis of continuous-time models for ecological and evolutionary theories. Theor Ecol 8, 481–490 (2015). https://doi.org/10.1007/s12080-015-0265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-015-0265-9

Keywords

Navigation