Skip to main content
Log in

Conditional dispersal, clines, and the evolution of dispersiveness

  • Original paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Conditional dispersal, in which an individual’s decision over whether to disperse is a response to environmental conditions, features prominently in studies of dispersal evolution. Using models of clines, I examine how one widely discussed cost of dispersal, namely, that dispersal impedes local adaptation, changes with conditional dispersal and what this implies for dispersal evolution. I examine the consequences for dispersal evolution of the responsiveness of dispersal to the environment, the accuracy of any proximal cues that individuals rely upon to assess habitat quality, and whether dispersal responds to fitness itself or only to some fitness components (juvenile survivorship). All of the conditional dispersal behaviors that I consider weaken the indirect cost of dispersal inhibiting local adaptation. However, if individuals rely on imprecise cues to assess habitat quality and base dispersal decisions on juvenile survivorship, then conditional dispersal can incur additional costs by exacerbating overcrowding. Conditional dispersal initially leads to steeper clines in traits under direct selection, but when dispersiveness can itself evolve, conditional dispersal allows sigmoidal clines to persist long after those obtained with unconditional movement would become stepped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alleaume-Benharira M, Pen IR, Ronce O (2006) Geographical patterns of adaptation within a species’ range: interactions between drift and gene flow. J Evol Biol 19:203–215

    Article  PubMed  CAS  Google Scholar 

  • Armsworth PR (2008) The evolution of nonrandom movement along clines. Evol Ecol Res 10:967–985

    Google Scholar 

  • Armsworth PR, Roughgarden JE (2005a) The impact of directed versus random movement on population dynamics and biodiversity patterns. Am Nat 165:449–465

    Article  PubMed  Google Scholar 

  • Armsworth PR, Roughgarden JE (2005b) Disturbance induces the contrasting evolution of reinforcement and dispersiveness in directed and random movers. Evolution 59:2083–2096

    PubMed  Google Scholar 

  • Armsworth PR, Roughgarden JE (2008) The structure of clines with fitness dependent dispersal. Am Nat 172:648–657

    Article  PubMed  Google Scholar 

  • Balkau BJ, Feldman MW (1973) Selection for migration modification. Genetics 74:171–174

    PubMed  Google Scholar 

  • Billiard S, Lenormand T (2005) Evolution of migration under kin selection and local adaptation. Evolution 59:13–23

    PubMed  Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    Article  PubMed  Google Scholar 

  • Caillaud MC, Boutin M, Braendle C, Simon JC (2002) A sex-linked locus controls wing polymorphism in males of the pea aphid, Acyrthosiphon pisum (Harris). Heredity 89:346–352

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Hambrock R, Lou Y (2008) Evolution of conditional dispersal: a reaction-diffusion-advection model. J Math Biol 57:361–386

    Article  PubMed  Google Scholar 

  • Cruz R, Vilas C, Mosquera J, Garcia C (2004) Relative contribution of dispersal and natural selection to the maintenance of a hybrid zone in Littorina. Evolution 58:2734–2746

    PubMed  Google Scholar 

  • Doligez B, Cadet C, Danchin E, Boulinier T (2003) When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim Behav 66:973–988

    Article  Google Scholar 

  • Edelaar P, Siepielski AM, Clobert J (2008) Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62:2462–2472

    Article  PubMed  Google Scholar 

  • Ehrlich PR (1965) The population biology of the butterfly, Euphydryas editha. II. The structure of the Jasper Ridge colony. Evolution 19:327–336

    Article  Google Scholar 

  • Erlandsson J, Rolan-Alvarez E, Johannesson K (1998) Migratory differences between ecotypes of the snail Littorina saxatilis on Galician rocky shores. Evol Ecol 12:913–924

    Article  Google Scholar 

  • Fisher RA (1950) Gene frequencies in a cline determined by selection and diffusion. Biometrics 6:353–361

    Article  PubMed  CAS  Google Scholar 

  • Gandon S, Michalakis Y (2001) Multiple causes of the evolution of dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University, Oxford, pp 155–167

    Google Scholar 

  • Garant D, Kruuk LEB, Wilkin TA, McCleery RH, Sheldon BC (2005) Evolution driven by differential dispersal within a wild bird population. Nature 433:60–65

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:21–28

    Article  Google Scholar 

  • Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc R Soc Lond B 272:2449–2456

    Article  Google Scholar 

  • Hadany L, Eshel I, Motro U (2004) No place like home: competition, dispersal and complex adaptation. J Evol Biol 17:1328–1336

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1948) The theory of a cline. J Genet 48:277–284

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578–581

    Article  Google Scholar 

  • Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–251

    Article  Google Scholar 

  • Hastings A (1983) Can spatial variation alone lead to selection for dispersal? Theor Popul Biol 24:244–251

    Article  Google Scholar 

  • Heino M, Metz JAJ, Kaitala V (1998) The enigma of frequency-dependent selection. Trends Ecol Evol 13:367–370

    Article  Google Scholar 

  • Higgins K, Lynch M (2001) Metapopulation extinction caused by mutation accumulation. Proc Natl Acad Sci U S A 98:2928–2933

    Article  PubMed  CAS  Google Scholar 

  • Holt RD (1985) Population dynamics in two-patch environments—some anomalous consequences of an optimal habitat distribution. Theor Popul Biol 28:181–208

    Article  Google Scholar 

  • Holt RD, Barfield M, Gomulkiewicz R (2004) Temporal variation can facilitate niche evolution in harsh environments. Am Nat 164:187–200

    Article  PubMed  Google Scholar 

  • Ims RA, Hjermann DO (2001) Condition-dependent dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University, Oxford, pp 203–216

    Google Scholar 

  • Kirkpatrick M, Ravigne V (2002) Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22–S35

    Article  PubMed  Google Scholar 

  • Kokko H, Sutherland WJ (2001) Ecological traps in changing environments: ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evol Ecol Res 3:537–551

    Google Scholar 

  • Kun A, Scheuring I (2006) The evolution of density-dependent dispersal in a noisy spatial population model. Oikos 115:308–320

    Article  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Liberman U, Feldman MW (1989) The reduction principle for genetic modifiers of the migration rate. In: Feldman MW (ed) Mathematical evolutionary theory. Princeton University Press, Princeton, pp 111–137

    Google Scholar 

  • MacCallum CJ, Nurnberger B, Barton NH, Szymura JM (1998) Habitat preference in the Bombina hybrid zone in Croatia. Evolution 52:227–239

    Article  Google Scholar 

  • May RM, Endler JA, McMurtrie RE (1975) Gene frequency clines in the presence of selection opposed by gene flow. Am Nat 109:659–676

    Article  Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–1027

    Article  Google Scholar 

  • Ovaskainen O (2004) Habitat-specific movement parameters estimated using mark-recapture data and a diffusion model. Ecology 85:242–257

    Article  Google Scholar 

  • Poethke HJ, Hovestadt T (2002) Evolution of density- and patch-size-dependent dispersal rates. Proc R Soc Lond B 269:637–645

    Article  Google Scholar 

  • Roff DA, Fairbairn DJ (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am Zool 31:243–251

    Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol System 38:231–253

    Article  Google Scholar 

  • Ross CL, Harrison RG (2002) A fine-scale spatial analysis of the mosaic hybrid zone between Gryllus firmus and Gryllus pennsylvanicus. Evolution 56:2296–2312

    PubMed  Google Scholar 

  • Roughgarden J (1979) Theory of population genetics and evolutionary ecology: an introduction. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Ruxton GD, Rohani P (1998) Fitness-dependent dispersal in metapopulations and its consequences for persistence and synchrony. J Anim Ecol 67:530–539

    Google Scholar 

  • Singer MC, Hanski I (2004) Dispersal behavior and evolutionary metapopulation dynamics. In: Ehrlich PR, Hanski I (eds) On the wings of the checkerspots: a model system for population biology. Oxford University Press, New York, pp 181–198

    Google Scholar 

  • Singer MC, Ng D, Thomas CD (1988) Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42:977–985

    Article  Google Scholar 

  • Singer MC, Thomas CD (1996) Evolutionary responses of a butterfly metapopulation to human- and climate-caused environmental variation. Am Nat 148:S9–S39

    Article  Google Scholar 

  • Singer MC, Thomas CD, Billington HL, Parmesan C (1994) Correlates of speed of evolution of host preference in a set of twelve populations of the butterfly Euphydryas editha. Ecoscience 1:107–114

    Google Scholar 

  • Slatkin M (1973) Gene flow and selection in a cline. Genetics 75:733–756

    PubMed  CAS  Google Scholar 

  • Szymura JM (1993) Analysis of hybrid zones with Bombina. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 261–289

    Google Scholar 

  • Szymura JM, Barton NH (1991) The genetic structure of the hybrid zone between the fire-bellied toads Bombina bombina and B. variegata: comparison between transects and between loci. Evolution 45:237–261

    Article  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496

    Article  PubMed  Google Scholar 

  • Thomas CD, Singer MC (1987) Variation in host preference affects movement patterns within a butterfly population. Ecology 68:1262–1267

    Article  Google Scholar 

  • Travis JMJ, Murrell DJ, Dytham C (1999) The evolution of density-dependent dispersal. Proc R Soc Lond B 266:1837–1842

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to many colleagues in the Departments of Animal and Plant Sciences in Sheffield and Biological Sciences in Stanford, particularly J. Roughgarden, for helpful suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Armsworth.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 26.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armsworth, P.R. Conditional dispersal, clines, and the evolution of dispersiveness. Theor Ecol 2, 105–117 (2009). https://doi.org/10.1007/s12080-008-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-008-0032-2

Keywords

Navigation