Skip to main content
Log in

Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Diabetic retinopathy (DR) is considered as a diabetes-related complication that can render severe visual impairments and is also a risk factor for acquired blindness in both developed as well as developing countries. Through fibrovascular epiretinal membranes (ERMs), this condition can similarly lead to tractional retinal detachment. Laboratory efforts evaluating the DR pathogenesis can be provided by ocular vitreous fluid and ERMs resulting from vitrectomy. The clinical stages of DR are significantly associated with expression levels of certain chemokines, including monocyte chemotactic protein-1 (MCP-1) in the intraocular fluid. The MCP-1 is also a known potent chemotactic factor for monocytes and macrophages that can stimulate them to produce superoxide and other mediators. Following hyperglycemia, retinal pigmented epithelial (RPE) cells, endothelial cells, and Müller’s glial cells are of utmost importance for MCP-1 production, and vitreous MCP-1 levels rise in patients with DR. Increased expression of the MCP-1 in the eyes can also play a significant role in the pathogenesis of DR. In this review, current clinical and laboratory progress achieved on the MCP-1 and the DR concerning neovascularization and inflammatory responses in vitreous and/or aqueous humor of DR patients was summarized. It was suggested that further exploration of the MCP-1/CCR2 axis association between clinical stages of DR and expression levels of inflammatory and angiogenic cytokines and chemokines, principally the MCP-1 might lead to potential therapies aiming at neutralizing antibodies and viral vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abcouwer SF (2013) Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol 1(11):1–12

  • Adamis A (2002) Is diabetic retinopathy an inflammatory disease? BMJ Publishing Group Ltd., Is diabetic retinopathy an inflammatory disease?

    CAS  Google Scholar 

  • Adamis AP, Berman AJ (2008) Immunological mechanisms in the pathogenesis of diabetic retinopathy. Seminars in immunopathology. Springer

  • Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487

    CAS  PubMed  Google Scholar 

  • Antunica AG, Karaman K, Znaor L, Sapunar A, Buško V, Puzović V (2012) IL-12 concentrations in the aqueous humor and serum of diabetic retinopathy patients. Graefes Arch Clin Exp Ophthalmol 250(6):815–821

    Google Scholar 

  • Bachelerie F, Ben-Baruch A, Burkhardt A, Combadiere C, Farber J, Graham G, Horuk R, Sparre-Ulrich A, Locati M, Luster A (2013) Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66(1):71P–779P

    PubMed  Google Scholar 

  • Bartoli C, Civatte M, Pellissier J, Figarella-Branger D (2001) CCR2A and CCR2B, the two isoforms of the monocyte chemoattractant protein-1 receptor are up-regulated and expressed by different cell subsets in idiopathic inflammatory myopathies. Acta Neuropathol 102(4):385–392

    CAS  PubMed  Google Scholar 

  • Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H (2018) A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 110:226–231

    CAS  PubMed  Google Scholar 

  • Bian Z-M, Elner SG, Strieter RM, Kunkel SL, Lukacs NW, Elner VM (1999) IL-4 potentiates IL-1ß-and TNF-a-stimulated IL-8 and MCP-1 protein production in human retinal pigment epithelial cells. Curr Eye Res 18(5):349–357

    CAS  PubMed  Google Scholar 

  • Bian Z-M, Field MG, Elner SG, Kahlenberg JM, Elner VM (2018) Distinct Cd40l receptors mediate inflammasome activation and secretion of Il-1β and Mcp-1 in cultured human retinal pigment epithelial cells. Exp Eye Res 170:29–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boulton M, Foreman D, Williams G, McLeod D (1998) VEGF localisation in diabetic retinopathy. Br J Ophthalmol 82(5):561–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bromberg-White JL, Glazer L, Downer R, Furge K, Boguslawski E, Duesbery NS (2013) Identification of VEGF-independent cytokines in proliferative diabetic retinopathy vitreous. Invest Ophthalmol Vis Sci 54(10):6472–6480

    CAS  PubMed  Google Scholar 

  • Brown Z, Strieter RM, Neild GH, Thompson RC, Kunkel SL, Westwick J (1992) IL-1 receptor antagonist inhibits monocyte chemotactic peptide 1 generation by human mesangial cells. Kidney Int 42(1):95–101

    CAS  PubMed  Google Scholar 

  • Capeans C, De MR, Lojo S, Salorio MS (1998) CC chemokines in the vitreous of patients with proliferative vitreoretinopathy and proliferative diabetic retinopathy. Retina (Philadelphia, PA) 18(6):546–550

    CAS  Google Scholar 

  • Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR (1994) Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci 91(7):2752–2756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, He T, Xing Y, Cao T (2017a) Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy. Exp Ther Med 14(6):6022–6026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhang X, Liao N, Wen F (2017b) Assessment of biomarkers using multiplex assays in aqueous humor of patients with diabetic retinopathy. BMC Ophthalmol 17(1):176

    PubMed  PubMed Central  Google Scholar 

  • Cheung CMG, Vania M, Ang M, Chee SP, Li J (2012) Comparison of aqueous humor cytokine and chemokine levels in diabetic patients with and without retinopathy. Mol Vis 18:830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conti, I. and B. J. Rollins (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol, Elsevier, 14, 149, 154

  • Cui Y, Xu X, Bi H, Zhu Q, Wu J, Xia X, Ren Q, Ho PC (2006) Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp Eye Res 83(4):807–816

    CAS  PubMed  Google Scholar 

  • Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci 87(13):5134–5138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Rangasamy S, McGuire P (2012) Chemokine mediated monocyte trafficking into the retina: role of inflammation in diabetic retinopathy. Invest Ophthalmol Vis Sci 53(14):5768–5768

    Google Scholar 

  • Demircan N, Safran B, Soylu M, Ozcan A, Sizmaz S (2006) Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye 20(12):1366–1369

    CAS  PubMed  Google Scholar 

  • Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29(6):313–326

    CAS  Google Scholar 

  • Dong N, Li X, Xiao L, Yu W, Wang B, Chu L (2012) Upregulation of retinal neuronal MCP-1 in the rodent model of diabetic retinopathy and its function in vitro. Invest Ophthalmol Vis Sci 53(12):7567–7575

    CAS  PubMed  Google Scholar 

  • Dong N, Xu B, Wang B, Chu L (2013) Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy. Mol Vis 19:1734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dragomir E, Simionescu M (2006) Monocyte chemoattractant protein-1–a major contributor to the inflammatory process associated with diabetes. Arch Physiol Biochem 112(4–5):239–244

    CAS  PubMed  Google Scholar 

  • Eastlake K, Banerjee P, Angbohang A, Charteris D, Khaw P, Limb G (2016) Müller glia as an important source of cytokines and inflammatory factors present in the gliotic retina during proliferative vitreoretinopathy. Glia 64(4):495–506

    CAS  PubMed  Google Scholar 

  • El-Asrar AMA, Van Damme J, Put W, Veckeneer M, Dralands L, Billiau A, Missotten L (1997) Monocyte chemotactic protein-1 in proliferative vitreoretinal disorders. Am J Ophthalmol 123(5):599–606

    Google Scholar 

  • El-Asrar AMA, Struyf S, Kangave D, Geboes K, Van Damme J (2006) Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Eur Cytokine Netw 17(3):155–165

    PubMed  Google Scholar 

  • El-Asrar AMA, Nawaz MI, Kangave D, Geboes K, Ola MS, Ahmad S, Al-Shabrawey M (2011) High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy. Mol Vis 17:1829

    PubMed  PubMed Central  Google Scholar 

  • El-Asrar AMA, Struyf S, Mohammad G, Gouwy M, Rytinx P, Siddiquei MM, Hernández C, Alam K, Mousa A, De Hertogh G (2017) Osteoprotegerin is a new regulator of inflammation and angiogenesis in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 58(7):3189–3201

    PubMed  Google Scholar 

  • Elner SG, Elner VM, Jaffe GJ, Stuart A, Kunkel SL, Strieter RM (1995) Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr Eye Res 14(11):1045–1053

    CAS  PubMed  Google Scholar 

  • Esser P, Heimann K, Wiedemann P (1993) Macrophages in proliferative vitreoretinopathy and proliferative diabetic retinopathy: differentiation of subpopulations. Br J Ophthalmol 77(11):731–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Wang X, Liu T, Zhang M, Xu G, Ni Y (2017) Expression of CCL2 and its receptor in activation and migration of microglia and monocytes induced by photoreceptor apoptosis. Mol Vis 23:765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S (2002) Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol 133(1):70–77

    CAS  PubMed  Google Scholar 

  • Funatsu H, Yamashita H, Noma H, Mimura T, Nakamura S, Sakata K, Hori S (2005a) Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefes Arch Clin Exp Ophthalmol 243(1):3–8

    CAS  PubMed  Google Scholar 

  • Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, Eguchi S, Hori S (2005b) Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology 112(5):806–816

    PubMed  Google Scholar 

  • Funatsu H, Noma H, Mimura T, Eguchi S, Hori S (2009) Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology 116(1):73–79

    PubMed  Google Scholar 

  • Gharaee-Kermani M, Denholm EM, Phan SH (1996) Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J Biol Chem 271(30):17779–17784

    CAS  PubMed  Google Scholar 

  • Ghasemi H, Ghazanfari T, Yaraee R, Owlia P, Hassan ZM, Faghihzadeh S (2012) Roles of IL-10 in ocular inflammations: a review. Ocul Immunol Inflamm 20(6):406–418

    CAS  PubMed  Google Scholar 

  • Goldberg RB (2009) Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metabol 94(9):3171–3182

    CAS  Google Scholar 

  • Harada T, Harada C, Nakayama N, Okuyama S, Yoshida K, Kohsaka S, Matsuda H, Wada K (2000) Modification of glial–neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron 26(2):533–541

    CAS  PubMed  Google Scholar 

  • Harada T, Harada C, Mitamura Y, Akazawa C, Ohtsuka K, Ohno S, Takeuchi S, Wada K (2002) Neurotrophic factor receptors in epiretinal membranes after human diabetic retinopathy. Diabetes Care 25(6):1060–1065

    CAS  PubMed  Google Scholar 

  • Harada C, Mitamura Y, Harada T (2006a) The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res 25(2):149–164

    CAS  PubMed  Google Scholar 

  • Harada C, Okumura A, Namekata K, Nakamura K, Mitamura Y, Ohguro H, Harada T (2006b) Role of monocyte chemotactic protein-1 and nuclear factor kappa B in the pathogenesis of proliferative diabetic retinopathy. Diabetes Res Clin Pract 74(3):249–256

    CAS  PubMed  Google Scholar 

  • Harkness K, Sussman J, Davies-Jones G, Greenwood J, Woodroofe M (2003) Cytokine regulation of MCP-1 expression in brain and retinal microvascular endothelial cells. J Neuroimmunol 142(1):1–9

    CAS  PubMed  Google Scholar 

  • Hernandez C, Segura R, Fonollosa A, Carrasco E, Francisco G, Simo R (2005) Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet Med 22(6):719–722

    CAS  PubMed  Google Scholar 

  • Hong KH, Ryu J, Han KH (2005) Monocyte chemoattractant protein-1–induced angiogenesis is mediated by vascular endothelial growth factor-a. Blood 105(4):1405–1407

    CAS  PubMed  Google Scholar 

  • Huang S, Robinson JB, DeGuzman A, Bucana CD, Fidler IJ (2000) Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 60(19):5334–5339

    CAS  PubMed  Google Scholar 

  • Jeon HJ, Choi HJ, Park BH, Lee YH, Oh T (2013) Association of monocyte chemoattractant protein-1 (MCP-1) 2518A/G polymorphism with proliferative diabetic retinopathy in Korean type 2 diabetes. Yonsei Med J 54(3):621–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Hennein L, Xu Y, Bao N, Coh P, Tao L (2016) Elevated serum monocyte chemoattractant protein-1 levels and its genetic polymorphism is associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabet Med 33(1):84–90

    CAS  PubMed  Google Scholar 

  • Jonas JB, Jonas RA, Neumaier M, Findeisen P (2012) Cytokine concentration in aqueous humor of eyes with diabetic macular edema. Retina 32(10):2150–2157

    CAS  PubMed  Google Scholar 

  • Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. J Diabetes Res 2007

  • Kim MJ, Tam FW (2011) Urinary monocyte chemoattractant protein-1 in renal disease. Clin Chim Acta 412(23):2022–2030

    CAS  PubMed  Google Scholar 

  • Klein R, Klein BE, Moss SE, Cruickshanks KJ (1998) The Wisconsin epidemiologic study of diabetic retinopathy: XVII: the 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes11Proprietary interest: none. Ophthalmology 105(10):1801–1815

    CAS  PubMed  Google Scholar 

  • Klein BE, Horak KL, Maynard JD, Lee KE, Klein R (2017) Association of Skin Intrinsic Fluorescence with retinal microvascular complications of long term type 1 diabetes in the Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmic Epidemiol 24(4):211–216

    PubMed  PubMed Central  Google Scholar 

  • Knott R, Robertson M, Muckersie E, Folefac V, Fairhurst F, Wileman S, Forrester J (1999) A model system for the study of human retinal angiogenesis: activation of monocytes and endothelial cells and the association with the expression of the monocarboxylate transporter type 1 (MCT-1). Diabetologia 42(7):870–877

    CAS  PubMed  Google Scholar 

  • Lockwood CJ, Matta P, Krikun G, Koopman LA, Masch R, Toti P, Arcuri F, Huang S-TJ, Funai EF, Schatz F (2006) Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-α and interleukin-1β in first trimester human decidual cells: implications for preeclampsia. Am J Pathol 168(2):445–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunol Today 20(6):254–257

    CAS  PubMed  Google Scholar 

  • Matsumoto Y, Takahashi M, Ogata M (2002) Relationship between glycoxidation and cytokines in the vitreous of eyes with diabetic retinopathy. Jpn J Ophthalmol 46(4):406–412

    CAS  PubMed  Google Scholar 

  • Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J (2001) Monocyte chemotactic protein-1 in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmologica 215(6):415–418

    CAS  PubMed  Google Scholar 

  • Mitamura Y, Harada C, Harada T (2005) Role of cytokines and trophic factors in the pathogenesis of diabetic retinopathy. Curr Diabetes Rev 1(1):73–81

    CAS  PubMed  Google Scholar 

  • Murugeswari P, Shukla D, Rajendran A, Kim R, Namperumalsamy P, Muthukkaruppan V (2008) PROINFLAMMATORY CYTOKINES AND ANGIOGENIC AND ANTI-ANGIOGENIC FACTORS IN VITREOUS OF PATIENTS WITH PROLIFERATIVE DIABETIC RETINOPATHY AND EALES’DISEASE. Retina 28(6):817–824

    PubMed  Google Scholar 

  • Murugeswari P, Shukla D, Kim R, Namperumalsamy P, Stitt AW, Muthukkaruppan V (2014) Angiogenic potential of vitreous from proliferative diabetic retinopathy and Eales' disease patients. PLoS One 9(10):e107551

    PubMed  PubMed Central  Google Scholar 

  • Nawaz M, Van Raemdonck K, Mohammad G, Kangave D, Van Damme J, El-Asrar AA, Struyf S (2013) Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy. Exp Eye Res 109:67–76

    CAS  PubMed  Google Scholar 

  • O’Connor T, Borsig L, Heikenwalder M (2015) CCL2-CCR2 signaling in disease pathogenesis. Endocr Metab Immune Disord Drug Targets 15(2):105–118

    PubMed  Google Scholar 

  • Oitzinger W, Hofer-Warbinek R, Schmid JA, Koshelnick Y, Binder BR, de Martin R (2001) Adenovirus-mediated expression of a mutant IκB kinase 2 inhibits the response of endothelial cells to inflammatory stimuli. Blood 97(6):1611–1617

    CAS  PubMed  Google Scholar 

  • Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J (2011) Notch1 controls macrophage recruitment and notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118(12):3436–3439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozturk BT, Bozkurt B, Kerimoglu H, Okka M, Kamis U, Gunduz K (2009) Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Mol Vis 15:1906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel J, Saleh G, Hykin P, Gregor Z, Cree I (2008) Concentration of haemodynamic and inflammatory related cytokines in diabetic retinopathy. Eye 22(2):223–228

    CAS  PubMed  Google Scholar 

  • Portillo J-AC, Greene JA, Okenka G, Miao Y, Sheibani N, Kern TS, Subauste CS (2014a) CD40 promotes the development of early diabetic retinopathy in mice. Diabetologia 57(10):2222–2231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Portillo J-AC, Schwartz I, Zarini S, Bapputty R, Kern TS, Gubitosi-Klug RA, Murphy RC, Subauste MC, Subauste CS (2014b) Proinflammatory responses induced by CD40 in retinal endothelial and Müller cells are inhibited by blocking CD40-Traf2, 3 or CD40-Traf6 signaling. Invest Ophthalmol Vis Sci 55(12):8590–8597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajamani U, Jialal I (2014) Hyperglycemia induces toll-like receptor-2 and-4 expression and activity in human microvascular retinal endothelial cells: implications for diabetic retinopathy. J Diabetes Res 2014:1–15

    Google Scholar 

  • Rangasamy S, McGuire PG, Das A (2012) Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr J Ophthalmol 19(1):52–59

    PubMed  PubMed Central  Google Scholar 

  • Rangasamy S, McGuire PG, Nitta CF, Monickaraj F, Oruganti SR, Das A (2014) Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PLoS One 9(10):e108508

    PubMed  PubMed Central  Google Scholar 

  • Reddy S, Amutha A, Rajalakshmi R, Bhaskaran R, Monickaraj F, Rangasamy S, Anjana RM, Abhijit S, Gokulakrishnan K, Das A, Mohan V, Balasubramanyam M (2017) Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complicat 31(5):804–809

    Google Scholar 

  • Rutar M, Natoli R, Chia R, Valter K, Provis JM (2015) Chemokine-mediated inflammation in the degenerating retina is coordinated by Müller cells, activated microglia, and retinal pigment epithelium. J Neuroinflammation 12(1):8

    PubMed  PubMed Central  Google Scholar 

  • Sanders SK, Crean SM, Boxer PA, Kellner D, LaRosa GJ, Hunt SW (2000) Functional differences between monocyte chemotactic protein-1 receptor a and monocyte chemotactic protein-1 receptor B expressed in a Jurkat T cell. J Immunol 165(9):4877–4883

    CAS  PubMed  Google Scholar 

  • Sassa Y, Yoshida S, Ishikawa K, Asato R, Ishibashi T, Kono T (2016) The kinetics of VEGF and MCP-1 in the second vitrectomy cases with proliferative diabetic retinopathy. Eye 30(5):746–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder S, Palinski W, Schmid-Schönbein G (1991) Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 139(1):81

    PubMed  PubMed Central  Google Scholar 

  • Semeraro F, Bamonte G, Cifariello F, Romano MR, Costagliola C (2013) Vitreous mediators in retinal hypoxic diseases. Mediat Inflamm 2013

  • Semeraro F, Cancarini A, Rezzola S, Romano M, Costagliola C (2015) Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res 2015:1–16

    Google Scholar 

  • Simó R, Sundstrom JM, Antonetti DA (2014) Ocular anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care 37(4):893–899

    PubMed  Google Scholar 

  • Standiford TJ, Kunkel S, Phan S, Rollins B, Strieter R (1991) Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 266(15):9912–9918

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y (2011) Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol 55(3):256–263

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Suzuki K, Kudo T, Metoki T, Nakazawa M (2016) Level of vascular endothelial growth factor in the vitreous fluid of proliferative diabetic retinopathy patients and prognosis after vitrectomy. Ophthalmologica 236(3):133–138

    PubMed  Google Scholar 

  • Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30(5):343–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tashimo A, Mitamura Y, Nagai S, Nakamura Y, Ohtsuka K, Mizue Y, Nishihira J (2004) Aqueous levels of macrophage migration inhibitory factor and monocyte chemotactic protein-1 in patients with diabetic retinopathy. Diabet Med 21(12):1292–1297

    CAS  PubMed  Google Scholar 

  • Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S, Ishigatsubo Y, Okubo T (1994) NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 153(5):2052–2063

    CAS  PubMed  Google Scholar 

  • Vakilian A, Khorramdelazad H, Heidari P, Rezaei ZS, Hassanshahi G (2017) CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem Int 103(1–7):1–7

    CAS  PubMed  Google Scholar 

  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-α-induced apoptosis by NF-κB. Science 274(5288):787–789

    PubMed  Google Scholar 

  • Van Coillie E, Van Damme J, Opdenakker G (1999) The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev 10(1):61–86

    PubMed  Google Scholar 

  • Veenstra AA, Kern T (2014) Role of inflammatory CCR2+ monocytes in early stage diabetic retinopathy. Invest Ophthalmol Vis Sci 55(13):1050–1050

    Google Scholar 

  • Vujosevic S, Simó R (2017) Local and systemic inflammatory biomarkers of diabetic retinopathy: an integrative approach. Invest Ophthalmol Vis Sci 58(6):BIO68–BIO75

    CAS  PubMed  Google Scholar 

  • Vujosevic S, Micera A, Bini S, Berton M, Esposito G, Midena E (2016) Proteome analysis of retinal glia cells-related inflammatory cytokines in the aqueous humour of diabetic patients. Acta Ophthalmol 94(1):56–64

    CAS  PubMed  Google Scholar 

  • Wakabayashi Y, Usui Y, Okunuki Y, Kezuka T, Takeuchi M, Iwasaki T, Ohno A, Goto H (2011) Increases of vitreous monocyte chemotactic protein 1 and interleukin 8 levels in patients with concurrent hypertension and diabetic retinopathy. Retina 31(9):1951–1957

    CAS  PubMed  Google Scholar 

  • Wang W, He M, Huang W (2016) Association of monocyte chemoattractant protein-1 gene 2518A/G polymorphism with diabetic retinopathy in type 2 diabetes mellitus: a meta-analysis. Diabetes Res Clin Pract 120:40–46

    CAS  PubMed  Google Scholar 

  • Wells T, Power CA, Lusti-Narasimhan M, Hoogewerf AJ, Cooke RM, Chung C, Peitsch M, Proudfoot A (1996) Selectivity and antagonism of chemokine receptors. J Leukoc Biol 59(1):53–60

    CAS  PubMed  Google Scholar 

  • Willermain F, Caspers-Velu L, Baudson N, Dubois C, Hamdane M, Willems F, Velu T, Bruyns C (2000) Role and expression of CD40 on human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 41(11):3485–3491

    CAS  PubMed  Google Scholar 

  • Xia M, Sui Z (2009) Recent developments in CCR2 antagonists. Expert Opin Ther Pat 19(3):295–303

    CAS  PubMed  Google Scholar 

  • Yap H, Frankel A, Tam F (2017) Review article-MCP-1: a potential target for diabetic microvascular complications. Urol Nephrol Open Access J 5(3). https://doi.org/10.15406/unoaj.2017.05.00171

  • Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen S-J, Dekker JM, Fletcher A, Grauslund J (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564

    PubMed  PubMed Central  Google Scholar 

  • Yeo TK, Ahad MA, Kuo N-w, Spagnolo P, Menezo V, Lympany P, Lightman S (2006) Chemokine gene polymorphisms in idiopathic anterior uveitis. Cytokine 35(1):29–35

    CAS  PubMed  Google Scholar 

  • Yin H, Fang X, Ma J, Chen M, Yang Y, Guo S, Chen Z, Su Z, Feng L, Ye P (2016) Idiopathic choroidal neovascularization: intraocular inflammatory cytokines and the effect of intravitreal ranibizumab treatment. Sci Rep 6:31880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon B-y, Ju J-h, Jung YO, Jhun J-y, Park M-k, Park S-h, Cho C-s, Kim H-y (2007) Expression of CCR2A, an isoform of MCP-1 receptor, is increased by MCP-1, CD40 ligand and TGF-[beta] in fibroblast like synoviocytes of patients with RA. Exp Mol Med 39(4):499

    PubMed  Google Scholar 

  • Yoshida S, Kubo Y, Kobayashi Y, Zhou Y, Nakama T, Yamaguchi M, Tachibana T, Ishikawa K, Arita R, Nakao S (2015) Increased vitreous concentrations of MCP-1 and IL-6 after vitrectomy in patients with proliferative diabetic retinopathy: possible association with postoperative macular oedema. In: British Journal of ophthalmology: bjophthalmol-2014-306366, vol 99, pp 960–966

    Google Scholar 

  • Yoshimura T, Robinson E, Tanaka S, Appella E, Leonard E (1989) Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J Immunol 142(6):1956–1962

    CAS  PubMed  Google Scholar 

  • You J-J, Yang C-H, Yang C-M, Chen M-S (2014) Cyr61 induces the expression of monocyte chemoattractant protein-1 via the integrin ανβ3, FAK, PI3K/Akt, and NF-κB pathways in retinal vascular endothelial cells. Cell Signal 26(1):133–140

    CAS  PubMed  Google Scholar 

  • Yu Y, Zhang J, Zhu R, Zhao R, Chen J, Jin J, Tian Y, Su S (2017) The profile of Angiogenic factors in vitreous humor of the patients with proliferative diabetic retinopathy. Curr Mol Med 17(4):280–286

    CAS  PubMed  Google Scholar 

  • Zhang Y, Rollins BJ (1995) A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 functions as a dimer. Mol Cell Biol 15(9):4851–4855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Liu H, Al-Shabrawey M, Caldwell RW, Caldwell RB (2011a) Inflammation and diabetic retinal microvascular complications. J Cardiovasc Dis Res 2(2):96–103

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Liu H, Al-Shabrawey M, Caldwell RW, Caldwell RB (2011b) Inflammation and diabetic retinal microvascular complications. Elsevier, Inflammation and diabetic retinal microvascular complications

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang J, Zeng L, Huang H, Yang M, Fu X, Tian C, Xiang Z, Huang J, Fan H (2012) The-2518A/G polymorphism in the MCP-1 gene and tuberculosis risk: a meta-analysis. PLoS One 7(7):e38918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang S, Xia X (2012) Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Curr Eye Res 37(5):416–420

    CAS  PubMed  Google Scholar 

  • Zou C, Han C, Zhao M, Yu J, Bai L, Yao Y, Gao S, Cao H, Zheng Z (2018) Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin Proteomics 15(1):12

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research project was supported by Rafsanjan University of Medical Sciences, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Khorramdelazad.

Ethics declarations

Conflict of interest

All of the authors declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi, Y., Hassanshahi, G., Kounis, N.G. et al. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J. Cell Commun. Signal. 13, 451–462 (2019). https://doi.org/10.1007/s12079-018-00500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-018-00500-8

Keywords

Navigation