Skip to main content

Advertisement

Log in

Angiogenesis in liver regeneration and fibrosis: “a double-edged sword”

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Angiogenesis, defined as the formation of new microvasculature from preexisting blood vessels and mature endothelial cells, plays a major role in wound healing and scar formation, and it is associated with inflammatory responses. Angiogenesis can occur in physiological conditions, such as during liver regeneration, and in pathological situations, such as during the progression of fibrosis to cirrhosis and also during tumor angiogenesis. Cellular cross-talk among liver sinusoidal endothelial cells (LSECs), hepatic stellate cells and hepatocytes is believed to play an important role in the angiogenesis process during both liver regeneration and development of cirrhosis. In addition to mature endothelial cells, bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs) have been recently identified for their contribution to post-natal vasculogenesis/angiogenesis. In vivo, EPCs are mobilized into the peripheral blood in response to tissue ischemia or traumatic injury, migrate to the sites of injured endothelium and differentiate into mature endothelial cells. In our recent studies, we have explored the role of EPC-mediated angiogenesis in liver regeneration and/or cirrhosis. Results have demonstrated significantly increased endogenous levels of circulating EPCs in cirrhotic patients in comparison to the controls. Also, EPCs from cirrhotic patients have been observed to stimulate substantial angiogenesis by resident LSECs in vitro via paracrine factors such as vascular endothelial growth factor and platelet-derived growth factor. This review gives an overview of the angiogenesis process in liver regeneration and disease and discusses a new mechanism for intrahepatic angiogenesis mediated by BM-derived EPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Michalopoulos GK. Liver regeneration. J Cell Physiol 2007;213:286–300

    Article  PubMed  CAS  Google Scholar 

  2. Michalopoulos GK. Liver regeneration: alternative epithelial pathways. Int J Biochem Cell Biol 2011;43:173–179

    Article  PubMed  CAS  Google Scholar 

  3. Drixler TA, Vogten MJ, Ritchie ED, van Vroonhoven TJ, Gebbink MF, Voest EE, et al. Liver regeneration is an angiogenesis-associated phenomenon. Ann Surg 2002;236:703–711

    Article  PubMed  Google Scholar 

  4. Vanheule E, Geerts AM, Van Huysse J, Schelfhout D, Praet M, Van Vlierberghe H, et al. An intravital microscopic study of the hepatic microcirculation in cirrhotic mice models: relationship between fibrosis and angiogenesis. Int J Exp Pathol 2008;89:419–432

    Article  PubMed  Google Scholar 

  5. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6:389–395

    Article  PubMed  CAS  Google Scholar 

  6. Kirton JP, Xu Q. Endothelial precursors in vascular repair. Microvasc Res 2010;79:193–199

    Article  PubMed  CAS  Google Scholar 

  7. Kaur S, Jayakumar K, Kartha CC. The potential of circulating endothelial progenitor cells to form colonies is inversely proportional to total vascular risk score in patients with coronary artery disease. Indian Heart J 2007;59:475–481

    PubMed  Google Scholar 

  8. Kaur S, Tripathi D, Dongre K, Garg V, Rooge S, Mukopadhyay A, et al. Increased number and function of endothelial progenitor cells stimulate angiogenesis by resident liver sinusoidal endothelial cells (SECs) in cirrhosis through paracrine factors. J Hepatol 2012;57:1193–1198

    Article  PubMed  CAS  Google Scholar 

  9. Kmieć Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 2001;61:1–151

    Google Scholar 

  10. Sakamoto T, Liu Z, Murase N, Ezure T, Yokomuro S, Poli V, et al. Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy. Hepatology 1999;29:403–411

    Article  PubMed  CAS  Google Scholar 

  11. Rabes HM. Kinetics of hepatocellular proliferation as a function of the microvascular structure and functional state of the liver. Ciba Found Symp 1977;55:31–53

    PubMed  Google Scholar 

  12. Webber EM, Bruix J, Pierce RH, Fausto N. Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology 1998;28:1226–1234

    Article  PubMed  CAS  Google Scholar 

  13. Van Sweringen HL, Sakai N, Tevar AD, Burns JM, Edwards MJ, Lentsch AB. CXC chemokine signaling in the liver: impact on repair and regeneration. Hepatology 2011;54:1445–1453

    Article  PubMed  Google Scholar 

  14. Wisse E, De Zanger RB, Charels K, Van Der Smissen P, McCuskey RS. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 1985;5:683–692

    Article  PubMed  CAS  Google Scholar 

  15. Martinez-Hernandez A, Amenta PS. The extracellular matrix in hepatic regeneration. FASEB J 1995;9:1401–410

    PubMed  CAS  Google Scholar 

  16. Wack KE, Ross MA, Zegarra V, Sysko LR, Watkins SC, Stolz DB. Sinusoidal ultrastructure evaluated during the revascularization of regenerating rat liver. Hepatology 2001;33:363–378

    Article  PubMed  CAS  Google Scholar 

  17. Ross MA, Sander CM, Kleeb TB, Watkins SC, Stolz DB. Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology 2001;34:1135–1148

    Article  PubMed  CAS  Google Scholar 

  18. Maeno H, Ono T, Dhar DK, Sato T, Yamanoi A, Nagasue N. Expression of hypoxia inducible factor-1alpha during liver regeneration induced by partial hepatectomy in rats. Liver Int 2005;25:1002–1009

    Article  PubMed  CAS  Google Scholar 

  19. Redaelli CA, Semela D, Carrick FE, Ledermann M, Candinas D, Sauter B, et al. Effect of vascular endothelial growth factor on functional recovery after hepatectomy in lean and obese mice. J Hepatol 2004;40:305–312

    Article  PubMed  CAS  Google Scholar 

  20. Taniguchi E, Sakisaka S, Matsuo K, Tanikawa K, Sata M. Expression and role of vascular endothelial growth factor in liver regeneration after partial hepatectomy in rats. J Histochem Cytochem 2001;49:121–130

    Article  PubMed  CAS  Google Scholar 

  21. Shimizu H, Miyazaki M, Wakabayashi Y, Mitsuhashi N, Kato A, Ito H, et al. Vascular endothelial growth factor secreted by replicating hepatocytes induces sinusoidal endothelial cell proliferation during regeneration after partial hepatectomy in rats. J Hepatol 2001;34:683–689

    Article  PubMed  CAS  Google Scholar 

  22. Yokomori H, Oda M, Yoshimura K, Nagai T, Ogi M, Nomura M, et al. Vascular endothelial growth factor increases fenestral permeability in hepatic sinusoidal endothelial cells. Liver Int 2003;23:467–475

    Article  PubMed  CAS  Google Scholar 

  23. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 2010;468:310–315

    Article  PubMed  CAS  Google Scholar 

  24. LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP, et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 2003;299:890–893

    Article  PubMed  CAS  Google Scholar 

  25. Balabaud C, Bioulac-Sage P, Desmouliere A. The role of hepatic stellate cells in liver regeneration. J Hepatol 2004;40:1023–1026

    Article  PubMed  CAS  Google Scholar 

  26. Budny T, Palmes D, Stratmann U, Minin E, Herbst H, Spiegel HU. Morphologic features in the regenerating liver—a comparative intravital, lightmicroscopical and ultrastructural analysis with focus on hepatic stellate cells. Virchows Arch 2007;451:781–791

    Article  PubMed  Google Scholar 

  27. Neufeld G, Kessler O, Herzog Y. The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. Adv Exp Med Biol 2002;515:81–90

    PubMed  CAS  Google Scholar 

  28. Unemori EN, Ferrara N, Bauer EA, Amento EP. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol 1992;153:557–562

    Article  PubMed  CAS  Google Scholar 

  29. Zucker S, Mirza H, Conner CE, Lorenz AF, Drews MH, Bahou WF, et al. Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int J Cancer 1998;75:780–786

    Article  PubMed  CAS  Google Scholar 

  30. Pepper MS, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 1991;181:902–906

    Article  PubMed  CAS  Google Scholar 

  31. Sato T, El-Assal ON, Ono T, Yamanoi A, Dhar DK, Nagasue N. Sinusoidal endothelial cell proliferation and expression of angiopoietin/Tie family in regenerating rat liver. J Hepatol 2001;34:690–698

    Article  PubMed  CAS  Google Scholar 

  32. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995;376:70–74

    Article  PubMed  CAS  Google Scholar 

  33. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277:55–60

    Article  PubMed  CAS  Google Scholar 

  34. Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 1999;18:5356–5362

    Article  PubMed  CAS  Google Scholar 

  35. Greene AK, Wiener S, Puder M, Yoshida A, Shi B, Perez-Atayde AR, et al. Endothelial-directed hepatic regeneration after partial hepatectomy. Ann Surg 2003;237:530–535

    PubMed  Google Scholar 

  36. Boulton R, Woodman A, Calnan D, Selden C, Tam F, Hodgson H. Nonparenchymal cells from regenerating rat liver generates interleukin-1alpha and -1beta: a mechanism of negative regulation of hepatocyte proliferation. Hepatology 1997;26:49–58

    PubMed  CAS  Google Scholar 

  37. Oe S, Lemmer ER, Conner EA, Factor VM, Levéen P, Larsson J, et al. Intact signaling by transforming growth factor beta is not required for termination of liver regeneration in mice. Hepatology 2004;40:1098–1105

    Article  PubMed  CAS  Google Scholar 

  38. Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol 2009;50:604–620

    Article  PubMed  Google Scholar 

  39. Rosmorduc O, Wendum D, Corpechot C, Galy B, Sebbagh N, Raleigh J, et al. Hepatocellular hypoxia induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am J Pathol 1999;155:1065–1073

    Article  PubMed  CAS  Google Scholar 

  40. Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002;35:1010–1021

    Article  PubMed  CAS  Google Scholar 

  41. Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 2008;135:1729–1738

    Article  PubMed  CAS  Google Scholar 

  42. Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol 2010;53:976–980

    Article  PubMed  Google Scholar 

  43. Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology 2000;31:141–148

    Article  PubMed  CAS  Google Scholar 

  44. Novo E, Cannito S, Zamara E, Valfrè di Bonzo L, Caligiuri A, Cravanzola C, et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol 2007;170:1942–1953

    Article  PubMed  CAS  Google Scholar 

  45. Moon JO, Welch TP, Gonzalez FJ, Copple BL. Reduced liver fibrosis in hypoxia-inducible factor-1alpha-deficient mice. Am J Physiol Gastrointest Liver Physiol 2009;296:G582–G592

    Article  PubMed  CAS  Google Scholar 

  46. Copple BL, Kaska S, Wentling C. Hypoxia-inducible factor activation in myeloid cells contributes to the development of liver fibrosis in cholestatic mice. J Pharmacol Exp Ther 2012;341:307–316

    Article  PubMed  CAS  Google Scholar 

  47. Rockey DC. Vascular mediators in the injured liver. Hepatology 2003;37:4–12

    Article  PubMed  CAS  Google Scholar 

  48. Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol 2005;43:98–103

    Article  PubMed  CAS  Google Scholar 

  49. Cejudo-Martin P, Ros J, Navasa M, Fernandez J, Fernandez-Varo G, Ruiz-del-Arbol L, et al. Increased production of vascular endothelial growth factor in peritoneal macrophages of cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 2001;34:487–493

    Article  PubMed  CAS  Google Scholar 

  50. Tsugawa K, Hashizume M, Tomikawa M, Migou S, Kawanaka H, Shiraishi S, et al. Immunohistochemical localization of vascular endothelial growth factor in the rat portal hypertensive gastropathy. J Gastroenterol Hepatol 2001;16:429–437

    Article  PubMed  CAS  Google Scholar 

  51. Cha C, Dematteo RP. Molecular mechanisms in hepatocellular carcinoma development. Best Pract Res Clin Gastroenterol 2005;19:25–37

    Article  PubMed  CAS  Google Scholar 

  52. Pang R, Poon RT. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett 2006;242:151–167

    Article  PubMed  CAS  Google Scholar 

  53. Tugues S, Fernandez-Varo G, Muñoz-Luque J, Ros J, Arroyo V, Rodés J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 2007;46:1919–1926

    Article  PubMed  CAS  Google Scholar 

  54. Rosmorduc O. Antiangiogenic therapies in portal hypertension: a breakthrough in hepatology. Gastroenterol Clin Biol 2010;34:446–449

    Article  PubMed  CAS  Google Scholar 

  55. Patsenker E, Popov Y, Stickel F, Schneider V, Ledermann M, Sägesser H, et al. Pharmacological inhibition of integrin alphavbeta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology 2009;50:1501–1511

    Article  PubMed  CAS  Google Scholar 

  56. Parlakgumus A, Colakoglu T, Kayaselcuk F, Colakoglu S, Ezer A, Calıskan K, et al. Two drugs with paradoxical effects on liver regeneration through antiangiogenesis and antifibrosis: Losartan and Spironolactone: a pharmacologic dilemma on hepatocyte proliferation. J Surg Res 2013;179:60–65

    Article  PubMed  CAS  Google Scholar 

  57. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967

    Article  PubMed  CAS  Google Scholar 

  58. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362–367

    PubMed  CAS  Google Scholar 

  59. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999;5:434–438

    Article  PubMed  CAS  Google Scholar 

  60. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001;103:634–637

    Article  PubMed  CAS  Google Scholar 

  61. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000;97:3422–3427

    Article  PubMed  CAS  Google Scholar 

  62. Fan CL, Gao PJ, Che ZQ, Liu JJ, Wei J, Zhu DL. Therapeutic neovascularization by autologous transplantation with expanded endothelial progenitor cells from peripheral blood into ischemic hind limbs. Acta Pharmacol Sin 2005;26:1069–1075

    Article  PubMed  CAS  Google Scholar 

  63. Nakamura T, Torimura T, Sakamoto M, Hashimoto O, Taniguchi E, Inoue K, et al. Significance and therapeutic potential of endothelial progenitor cell transplantation in a cirrhotic liver rat model. Gastroenterology 2007;133:91–107

    Article  PubMed  CAS  Google Scholar 

  64. Nakamura T, Torimura T, Iwamoto H, Masuda H, Naitou M, Koga H, et al. Prevention of liver fibrosis and liver reconstitution of DMN-treated rat liver by transplanted EPCs. Eur J Clin Invest 2012;42:717–728

    Article  PubMed  CAS  Google Scholar 

  65. Sakamoto M, Nakamura T, Torimura T, Iwamoto H, Masuda H, Koga H, et al. Transplantation of endothelial progenitor cells ameliorates vascular dysfunction and portal hypertension in carbon tetrachloride-induced rat liver cirrhotic model. J Gastroenterol Hepatol 2013;28:168–178

    Article  PubMed  CAS  Google Scholar 

  66. Wang L, Wang X, Xie G, Wang L, Hill CK, DeLeve LD. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J Clin Invest 2012;122:1567–1573

    Article  PubMed  CAS  Google Scholar 

  67. Ho JW, Pang RW, Lau C, Sun CK, Yu WC, Fan ST, et al. Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 2006;44:836–843

    Article  PubMed  CAS  Google Scholar 

  68. Yu D, Sun X, Qiu Y, Zhou J, Wu Y, Zhuang L, et al. Identification and clinical significance of mobilized endothelial progenitor cells in tumor vasculogenesis of hepatocellular carcinoma. Clin Cancer Res 2007;13:3814–3824

    Article  PubMed  CAS  Google Scholar 

  69. Yu DC, Chen J, Sun XT, Zhuang LY, Jiang CP, Ding YT. Mechanism of endothelial progenitor cell recruitment into neo-vessels in adjacent non-tumor tissues in hepatocellular carcinoma. BMC Cancer 2010;10:435

    Article  PubMed  Google Scholar 

  70. Yu DC, Chen J, Ding YT. Hypoxic and highly angiogenic non-tumor tissues surrounding hepatocellular carcinoma: the ‘niche’ of endothelial progenitor cells. Int J Mol Sci 2010;11:2901–2909

    Article  PubMed  CAS  Google Scholar 

  71. Abdelmoneim SS, Talwalkar J, Sethi S, Kamath P, Fathalla MM, Kipp BR, et al. A prospective pilot study of circulating endothelial cells as a potential new biomarker in portal hypertension. Liver Int 2010;30:191–197

    Article  PubMed  CAS  Google Scholar 

  72. Rautou PE. Endothelial progenitor cells in cirrhosis: The more, the merrier? J Hepatol 2012;57:1163–1165

    Article  PubMed  Google Scholar 

  73. Kaur S, Kumar TR, Uruno A, Sugawara A, Jayakumar K, Kartha CC. Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic Res Cardiol 2009;104:739–749

    Article  PubMed  Google Scholar 

  74. Kaur S, Harikrishnan VS, Shenoy SJ, Radhakrishnan NS, Uruno A, Sugawara A, et al. Transfection of endothelial nitric oxide synthase gene improves angiogenic efficacy of endothelial progenitor cells in rabbits with hindlimb ischemia. J Clin Exp Cardiol 2011;2:140

    CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author is grateful to the Director, Institute of Liver and Biliary Sciences, Delhi, for providing the infrastructure and facilities to perform the study of bone marrow-derived endothelial progenitor cells in liver cirrhosis. The author is also thankful to Dr. Ashok Mukopadhyay, National Institute of Immunology, Delhi, for his valuable contributions to the study.

Compliance with Ethical Requirements and Conflict of interest

This article does not contain any studies with human or animal subjects. Savneet Kaur and K. Anita declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savneet Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, S., Anita, K. Angiogenesis in liver regeneration and fibrosis: “a double-edged sword”. Hepatol Int 7, 959–968 (2013). https://doi.org/10.1007/s12072-013-9483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-013-9483-7

Keywords

Navigation