Skip to main content
Log in

Right heart failure after left ventricular assist device implantation: a persistent problem

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Left ventricular assist device (LVAD) is an option for bridge-to-transplant or destination therapy for patients with end-stage heart failure. Right heart failure (RHF) remains a complication after LVAD implantation that portends high morbidity and mortality, despite advances in LVAD technology. Definitions of RHF vary, but generally include the need for inotropic or pulmonary vasodilator support, or potential right ventricular (RV) mechanical circulatory support. This review covers the complex pathophysiology of RHF related to underlying myocardial dysfunction, interventricular dependence, and RV afterload, as well as treatment strategies to curtail this challenging problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Stewart GC, Mehra MR. A history of devices as an alternative to heart transplantation. Heart Fail Clin. 2014;10:S1–12. https://doi.org/10.1016/j.hfc.2013.08.003.

    Article  PubMed  Google Scholar 

  2. Medtronic HVAD System Safety. Published June 4, 2021. https://www.medtronic.com/us-en/e/hvad-system-transition.html. Accessed October 26, 2021.

  3. Molina EJ, Shah P, Kiernan MS, et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann Thorac Surg. 2021;111:778–92. https://doi.org/10.1016/j.athoracsur.2020.12.038.

    Article  PubMed  Google Scholar 

  4. de By TMMH, Schoenrath F, Veen KM, et al. The European Registry for Patients with Mechanical Circulatory Support of the European Association for Cardio-Thoracic Surgery: third report. Eur J Cardio-Thorac Surg. 2022. https://doi.org/10.1093/ejcts/ezac032.

    Article  Google Scholar 

  5. Goldstein DJ, Meyns B, Xie R, et al. Third Annual Report From the ISHLT Mechanically Assisted Circulatory Support Registry: a comparison of centrifugal and axial continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2019;38:352–63. https://doi.org/10.1016/j.healun.2019.02.004.

    Article  PubMed  Google Scholar 

  6. Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24. https://doi.org/10.1016/j.jtcvs.2009.11.020.

    Article  PubMed  Google Scholar 

  7. Kalogeropoulos AP, Kelkar A, Weinberger JF, et al. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34:1595–603. https://doi.org/10.1016/j.healun.2015.05.005.

    Article  PubMed  Google Scholar 

  8. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device — final report. N Engl J Med. 2019;380:1618–27. https://doi.org/10.1056/nejmoa1900486.

    Article  PubMed  Google Scholar 

  9. Interagency Registry for Mechanically Assisted Circulatory Support—Appendix A—Adverse Event Definitions 5.0. https://www.uab.edu/medicine/intermacs/intermacs-documents. Accessed May 13, 2022.

  10. Soliman OII, Akin S, Muslem R, et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices. Circulation. 2018;137:891–906. https://doi.org/10.1161/CIRCULATIONAHA.117.030543.

    Article  PubMed  Google Scholar 

  11. Anderson MB, Goldstein J, Milano C, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant. 2015;34:1549–60. https://doi.org/10.1016/j.healun.2015.08.018.

    Article  PubMed  Google Scholar 

  12. Løgstrup BB, Nemec P, Schoenrath F, et al. Heart failure etiology and risk of right heart failure in adult left ventricular assist device support: the European Registry for Patients with Mechanical Circulatory Support (EUROMACS). Scand Cardiovasc J. 2020;54:306–14. https://doi.org/10.1080/14017431.2020.1781239.

    Article  PubMed  Google Scholar 

  13. Varshney AS, DeFilippis EM, Cowger JA, Netuka I, Pinney SP, Givertz MM. Trends and outcomes of left ventricular assist device therapy: JACC Focus Seminar. J Am Coll Cardiol. 2022;79:1092–107. https://doi.org/10.1016/j.jacc.2022.01.017.

    Article  PubMed  Google Scholar 

  14. Takeda K, Takayama H, Colombo PC, et al. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2015;34:1024–32. https://doi.org/10.1016/j.healun.2015.03.011.

    Article  PubMed  Google Scholar 

  15. Takeda K, Naka Y, Yang JA, et al. Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant. 2014;33:141–8. https://doi.org/10.1016/j.healun.2013.06.025.

    Article  PubMed  Google Scholar 

  16. Caraballo C, DeFilippis EM, Nakagawa S, et al. Clinical outcomes after left ventricular assist device implantation in older adults: an INTERMACS analysis. JACC Heart Fail. 2019;7:1069–78. https://doi.org/10.1016/j.jchf.2019.10.004.

    Article  PubMed  Google Scholar 

  17. Farrar DJ, Compton PG, Hershon JJ, Fonger JD, Donald Hill J. Right heart interaction with the mechanically assisted left heart. World J Surg. 1985;9:89–102.

    Article  CAS  PubMed  Google Scholar 

  18. Mandarino WA, Morita S, Kormos RL, et al. Quantitation of Right Ventricular Shape Changes After LVAD Implantation. ASAIO J. 1992;38:M228–31.

  19. Houston BA, Kalathiya RJ, Hsu S, et al. Right ventricular afterload sensitivity dramatically increases after left ventricular assist device implantation: a multi-center hemodynamic analysis. J Heart Lung Transplant. 2016;35:868–76. https://doi.org/10.1016/j.healun.2016.01.1225.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Raina A, Vaidya A, Gertz ZM, Chambers S, Forfia PR. Marked changes in right ventricular contractile pattern after cardiothoracic surgery: implications for post-surgical assessment of right ventricular function. J Heart Lung Transplant. 2013;32:777–83. https://doi.org/10.1016/j.healun.2013.05.004.

    Article  PubMed  Google Scholar 

  21. Cogswell R, John R, Shaffer A. Right ventricular failure after left ventricular assist device. Cardiol Clin. 2020;38:219–25. https://doi.org/10.1016/j.ccl.2020.01.007.

    Article  PubMed  Google Scholar 

  22. Atluri P, Fairman AS, MacArthur JW, et al. Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence. J Card Surg. 2013;28:770–5. https://doi.org/10.1111/jocs.12214.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burke MA, Givertz MM. Assessment and management of heart failure after left ventricular assist device implantation. Circulation. 2014;129:1161–6. https://doi.org/10.1161/CIRCULATIONAHA.113.002836.

    Article  PubMed  Google Scholar 

  24. Konstam MA, Kiernan MS, Bernstein D, et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation. 2018;137:e578–622. https://doi.org/10.1161/CIR.0000000000000560.

    Article  PubMed  Google Scholar 

  25. Puwanant S, Hamilton KK, Klodell CT, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27:1102–7. https://doi.org/10.1016/j.healun.2008.07.022.

    Article  PubMed  Google Scholar 

  26. Grant ADM, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60:521–8. https://doi.org/10.1016/j.jacc.2012.02.073.

    Article  PubMed  Google Scholar 

  27. Beck DR, Foley L, Rowe JR, et al. Right ventricular longitudinal strain in left ventricular assist device surgery–a retrospective cohort study. J Cardiothorac Vasc Anesth. 2017;31:2096–102. https://doi.org/10.1053/j.jvca.2017.07.018.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kukucka M, Stepanenko A, Potapov E, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30:64–9. https://doi.org/10.1016/j.healun.2010.09.006.

    Article  PubMed  Google Scholar 

  29. Silverton NA, Patel R, Zimmerman J, et al. Intraoperative transesophageal echocardiography and right ventricular failure after left ventricular assist device implantation. J Cardiothorac Vasc Anesth. 2018;32:2096–103. https://doi.org/10.1053/j.jvca.2018.02.023.

    Article  PubMed  Google Scholar 

  30. Hernandez GA, Lemor A, Blumer V, et al. Trends in utilization and outcomes of pulmonary artery catheterization in heart failure with and without cardiogenic shock. J Card Fail. 2019;25:364–71. https://doi.org/10.1016/j.cardfail.2019.03.004.

    Article  PubMed  Google Scholar 

  31. Gonzalez MH, Wang Q, Yaranov DM, et al. Dynamic assessment of pulmonary artery pulsatility index provides incremental risk assessment for early right ventricular failure after left ventricular assist device. J Card Fail. 2021;27:777–85. https://doi.org/10.1016/j.cardfail.2021.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Abraham WT, Stevenson LW, Bourge RC, Lindenfeld JA, Bauman JG, Adamson PB. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387:453–61. https://doi.org/10.1016/S0140-6736(15)00723-0.

    Article  PubMed  Google Scholar 

  33. Veenis JF, Radhoe SP, van Mieghem NM, et al. Safety and feasibility of hemodynamic pulmonary artery pressure monitoring using the CardioMEMS device in LVAD management. J Card Surg. 2021;36:3271–80. https://doi.org/10.1111/jocs.15767.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72. https://doi.org/10.1016/j.jacc.2008.03.009.

  35. Fitzpatrick JR, Frederick JR, Hsu VM, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–92. https://doi.org/10.1016/j.healun.2008.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Drakos SG, Janicki L, Horne BD, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105:1030–5. https://doi.org/10.1016/j.amjcard.2009.11.026.

    Article  PubMed  Google Scholar 

  37. Atluri P, Goldstone AB, Fairman AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96:857–63. https://doi.org/10.1016/j.athoracsur.2013.03.099.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ruiz-Cano MJ, Morshuis M, Koster A, et al. Risk factors of early right ventricular failure in patients undergoing LVAD implantation with intermediate Intermacs profile for advanced heart failure. J Card Surg. 2020;35:1832–9. https://doi.org/10.1111/jocs.14696.

    Article  PubMed  Google Scholar 

  39. Schlöglhofer T, Wittmann F, Paus R, et al. When nothing goes right: risk factors and biomarkers of right heart failure after left ventricular assist device implantation. Life. 2022;12:459. https://doi.org/10.3390/life12030459

  40. Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JF. A Bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail. 2016;4:711–21.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mehra MR, Cleveland JC, Uriel N, et al. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants. Eur J Heart Fail. 2021;23:1392–400. https://doi.org/10.1002/ejhf.2211.

    Article  PubMed  Google Scholar 

  42. Grandin EW, Zamani P, Mazurek JA, et al. Right ventricular response to pulsatile load is associated with early right heart failure and mortality after left ventricular assist device. J Heart Lung Transplant. 2017;36:97–105. https://doi.org/10.1016/j.healun.2016.06.015.

    Article  PubMed  Google Scholar 

  43. Imamura T, Kinugawa K, Kato N, et al. Late-onset right ventricular failure in patients with preoperative small left ventricle after implantation of continuous flow left ventricular assist device. Circ J. 2014;78:625–33. https://doi.org/10.1253/circj.CJ-13-1201.

    Article  CAS  PubMed  Google Scholar 

  44. DeVore AD, Hammill BG, Patel CB, et al. Intra-aortic balloon pump use before left ventricular assist device implantation: insights from the INTERMACS registry. ASAIO J. 2018;64:218–24. https://doi.org/10.1097/MAT.0000000000000629.

    Article  PubMed  Google Scholar 

  45. Lovich MA, Pezone MJ, Wakim MG, et al. Inhaled nitric oxide augments left ventricular assist device capacity by ameliorating secondary right ventricular failure. ASAIO J. 2015;61:379–85. https://doi.org/10.1097/MAT.0000000000000211.

    Article  CAS  PubMed  Google Scholar 

  46. Gulati G, Grandin EW, Kennedy K, et al. Preimplant phosphodiesterase-5 inhibitor use is associated with higher rates of severe early right heart failure after left ventricular assist device implantation. Circ Heart Fail. 2019; 12:e005537. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005537.

  47. Abbott Medical Devices. Implantation of the HeartMate 3 in subjects with heart failure using surgical SWIFT HM3 PMS (SWIFT). https://clinicaltrials.gov/ct2/show/NCT04548128. Accessed June 30, 2022.

  48. Imamura T, Narang N, Nnanabu J, et al. Hemodynamics of concomitant tricuspid valve procedures at LVAD implantation. J Card Surg. 2019;34:1511–8. https://doi.org/10.1111/jocs.14275.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Robertson JO, Grau-Sepulveda MV, Okada S, et al. Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: a Society of Thoracic Surgeons database analysis. J Heart Lung Transplant. 2014;33:609–17. https://doi.org/10.1016/j.healun.2014.01.861.

    Article  PubMed  Google Scholar 

  50. Song HK, Gelow JM, Mudd J, et al. Limited utility of tricuspid valve repair at the time of left ventricular assist device implantation. Ann Thorac Surg. 2016;101:2168–74. https://doi.org/10.1016/j.athoracsur.2016.03.040.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Veen KM, Mokhles MM, Soliman O, et al. Clinical impact and “natural” course of uncorrected tricuspid regurgitation after implantation of a left ventricular assist device: an analysis of the European Registry for Patients with Mechanical Circulatory Support (EUROMACS). Eur J Cardiothorac Surg. 2021;59:207–16. https://doi.org/10.1093/ejcts/ezaa294.

    Article  PubMed  Google Scholar 

  52. John R, Kanwar MK, Cleveland JC, et al. Concurrent valvular procedures during left ventricular assist device implantation and outcomes: a comprehensive analysis of the Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy With HeartMate 3 trial portfolio. J Thorac Cardiovasc Surg. 2022. https://doi.org/10.1016/j.jtcvs.2022.04.021.

  53. Bhama JK, Bansal U, Winger DG, et al. Clinical experience with temporary right ventricular mechanical circulatory support. J Thorac Cardiovasc Surg. 2018;156:1885–91. https://doi.org/10.1016/j.jtcvs.2018.04.094.

    Article  PubMed  Google Scholar 

  54. Potapov E, Meyer D, Swaminathan M, et al. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30:870–8. https://doi.org/10.1016/j.healun.2011.03.005.

    Article  PubMed  Google Scholar 

  55. Xanthopoulos A, Wolski K, Wang Q, et al. Postimplant phosphodiesterase-5 inhibitor use in centrifugal flow left ventricular assist devices. JACC Heart Fail. 2022;10:89–100. https://doi.org/10.1016/j.jchf.2021.09.008.

    Article  PubMed  Google Scholar 

  56. Coromilas EJ, Takeda K, Ando M, et al. Comparison of percutaneous and surgical right ventricular assist device support after durable left ventricular assist device insertion. J Card Fail. 2019;25:105–13. https://doi.org/10.1016/j.cardfail.2018.12.005.

    Article  PubMed  Google Scholar 

  57. Uriel N, Sayer G, Addetia K, et al. Hemodynamic ramp tests in patients with left ventricular assist devices. JACC Heart Fail. 2016;4:208–17. https://doi.org/10.1016/j.jchf.2015.10.001.

    Article  PubMed  Google Scholar 

  58. Montalto A, Amarelli C, Piazza V, et al. A new hemodynamic index to predict late right failure in patients implanted with last generation centrifugal pump. J Card Surg. 2021;36:2355–64. https://doi.org/10.1111/jocs.15564.

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit John.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

AS received research grants from Cryolife and Abbott. RJ is a consultant for Abbott and Medtronic and received research grants from Abbott.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siems, C., Aggarwal, R., Shaffer, A. et al. Right heart failure after left ventricular assist device implantation: a persistent problem. Indian J Thorac Cardiovasc Surg 39 (Suppl 1), 161–169 (2023). https://doi.org/10.1007/s12055-023-01481-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-023-01481-z

Keywords

Navigation